P8 保凸运算2

保凸运算

透视函数 Perspative Function

P : R n + 1 ↦ R n d o m    P = R n ∗ R + + P: R^{n+1} \mapsto R^n \quad dom \; P=R^n*R_{++} P:Rn+1RndomP=RnR++

P ( z , t ) = z t z ∈ R n t ∈ R + + P(z,t) = \frac{z}{t} \quad z \in R^n \quad t \in R_{++} P(z,t)=tzzRntR++

降维过程,将前所有元素,除以最后一维,并去掉最后一维。

在这里插入图片描述
任何一个函数,通过透视函数之后,还是凸集。

例:考虑 R n + 1 R^{n+1} Rn+1 线段。 x = ( x ~ , x n + 1 ) x ~ ∈ R n x n + 1 ∈ R + + x=(\tilde x,x_{n+1}) \quad \tilde x \in R^n \quad x_{n+1} \in R_{++} x=(x~,xn+1)x~Rnxn+1R++; y = ( y ~ , y n + 1 ) y ~ ∈ R n y n + 1 ∈ R + + y=(\tilde y,y_{n+1}) \quad \tilde y \in R^n \quad y_{n+1} \in R_{++} y=(y~,yn+1)y~Rnyn+1R++

θ ≥ 0 \theta \geq 0 θ0 线段维 θ x + ( 1 − θ ) y \theta x + (1-\theta) y θx+(1θ)y

证明:线段经过透视函数P后,仍然时凸集。

x → P P ( x ) x \rightarrow ^ P P(x) xPP(x) \quad y → P P ( y ) y \rightarrow ^ P P(y) yPP(y)
θ x + ( 1 − θ ) y → P P ( θ x + ( 1 − θ ) y ) \theta x + (1-\theta) y \rightarrow ^ P P(\theta x + (1-\theta) y) θx+(1θ)yPP(θx+(1θ)y)

μ = θ x n + 1 θ x n + 1 + ( 1 − θ ) y n + 1 \mu =\frac{\theta x_{n+1}}{ \theta x_{n+1} + (1-\theta) y_{n+1} } μ=θxn+1+(1θ)yn+1θxn+1
P ( θ x + ( 1 − θ ) y ) = θ x ~ + ( 1 − θ ) y ~ θ x n + 1 + ( 1 − θ ) y n + 1 = θ x n + 1 θ x n + 1 + ( 1 − θ ) y n + 1 x ~ x n + 1 + ( 1 − θ ) y n + 1 θ x n + 1 + ( 1 − θ ) y n + 1 y ~ y n + 1 = μ P ( x ) + ( 1 − μ ) P ( y ) \begin{aligned} P(\theta x + (1-\theta) y) &= \frac{\theta \tilde {x} + (1-\theta) \tilde {y}}{ \theta x_{n+1} + (1-\theta) y_{n+1} } \\ &=\frac{\theta x_{n+1}}{ \theta x_{n+1} + (1-\theta) y_{n+1} } \frac{\tilde {x}}{x_{n+1}} + \frac{(1-\theta) y_{n+1}}{ \theta x_{n+1} + (1-\theta) y_{n+1} } \frac{\tilde {y}}{y_{n+1}} \\ &=\mu P(x) + (1-\mu) P(y) \end{aligned} P(θx+(1θ)y)=θxn+1+(1θ)yn+1θx~+(1θ)y~=θxn+1+(1θ)yn+1θxn+1xn+1x~+θxn+1+(1θ)yn+1(1θ)yn+1yn+1y~=μP(x)+(1μ)P(y)

在这里插入图片描述

任意凸集的反透视映射仍是凸集。

P − 1 ( C ) = { ( x , t ) ∈ R n + 1 ∣ x t ∈ c , t > 0 } P^{-1}(C)=\lbrace (x,t) \in R^{n+1} | \frac{x}{t} \in c, t > 0 \rbrace P1(C)={(x,t)Rn+1txc,t>0}

考虑 ( x , t ) ∈ P − 1 ( C ) ( y , s ) ∈ P − 1 ( C ) 0 ≤ θ ≤ 1 (x,t) \in P^{-1}(C) \quad (y,s) \in P^{-1}(C) \quad 0 \leq \theta \leq 1 (x,t)P1(C)(y,s)P1(C)0θ1

θ x + ( 1 − θ ) y θ t + ( 1 − θ ) s ∈ ? C \frac{\theta x+(1-\theta)y}{\theta t+(1-\theta)s} \in^? C θt+(1θ)sθx+(1θ)y?C

θ t θ t + ( 1 − θ ) s x t + ( 1 − θ t θ t + ( 1 − θ ) s ) y s \begin{aligned} \frac{\theta t}{\theta t+(1-\theta)s}\frac{x}{t}+(1-\frac{\theta t}{\theta t+(1-\theta)s})\frac{y}{s} \end{aligned} θt+(1θ)sθttx+(1θt+(1θ)sθt)sy
x t \frac{x}{t} tx y s \frac{y}{s} sy 都是C中的一点,C是凸集。所以结论成立。

线性分数函数

g : R n ↦ R m + 1 g:R^n \mapsto R^{m+1} g:RnRm+1 为伪仿射函数
g ( x ) = [ A C T ] x + [ b d ] A ∈ R m + n b ∈ R m C ∈ R n d ∈ R g(x)=\begin{bmatrix} A \\ C^T \\ \end{bmatrix} x + \begin{bmatrix} b \\ d \\ \end{bmatrix} \quad A \in R^{m+n} \quad b\in R^{m} \quad C \in R^{n} \quad d \in R g(x)=[ACT]x+[bd]ARm+nbRmCRndR

P : R m + 1 ↦ R m P:R^{m+1} \mapsto R^{m} P:Rm+1Rm
定义:
f : R n ↦ R m = P ∘ g f:R^n \mapsto R^m = P \circ g f:RnRm=Pg 先经过 g g g,在经过 P P P
本质是仿射变换+透视变换。

f ( x ) = A x + b C T + d d o m    f { x ∣ C T x + d > 0 } f(x) = \frac{Ax+b}{C^T+d} \quad dom \;f \lbrace x | C^Tx + d > 0 \rbrace f(x)=CT+dAx+bdomf{xCTx+d>0}

例:两个随机变量的联合概率 → \rightarrow 条件概率

u ∈ { 1.. n } , v ∈ { 1... m } u \in \lbrace {1..n} \rbrace,v \in \lbrace {1...m} \rbrace u{1..n},v{1...m}

P i j = P ( u = i , v = j ) P_{ij}=P(u=i,v=j) Pij=P(u=i,v=j)
f i j = P ( u = i ∣ v = j ) f_{ij}=P(u=i|v=j) fij=P(u=iv=j)

f i j = P i j ∑ k = 1 n P k j f_{ij}= \frac{P_{ij}}{\sum_{k=1}^n P_{kj}} fij=k=1nPkjPij

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值