凸优化学习-(八)保持集合凸性的操作

凸优化学习

今天依然是保持函数凸性的操作。

学习笔记

一、透视函数 Perspective function

凸集经过透视函数变换仍然是凸集。
形如: p ( z , t ) = z t     dom f = R n × R + +    z ∈ R n    t ∈ R + + p(z,t)=\frac{z}{t}\ \ \ \ \text{dom}f=R^n×R_{++}\ \ z \in R^n\ \ t\in R_{++} p(z,t)=tz    domf=Rn×R++  zRn  tR++
其中, t t t n n n维向量中的最后一个元素。
透视函数可以这么理解,它实际上就是将所有分量除以最后一个分量,然后再去掉最后一个分量,以达到降维的目的。形象点理解,有点像从高维空间透过这个函数降下在低维空间的投影。

例1:

在这里插入图片描述

图一

考虑一个二维函数,有透视函数 p ( x 1 , x 2 ) p(x_1,x_2) p(x1,x2)对于 ( x 1 , x 2 ) → \overrightarrow{(x_1,x_2)} (x1,x2) 这个二维向量,在 x 2 = − 1 x_2=-1 x2=1上的透视为 ( − x 1 x 2 , − 1 ) (-\frac{x_1}{x_2},-1) (x2x1,1),失去了 x 2 x_2 x2这一维。

例2:

考虑 R n + 1 R^{n+1} Rn+1有向线段 θ x + ( 1 − θ ) y \theta x+(1-\theta)y θx+(1θ)y其中 0 ≤ θ ≤ 1 x = ( x ~ , x n + 1 )    x ~ ∈ R n    x n + 1 ∈ R + + y = ( y ~ , y n + 1 )    y ~ ∈ R n    y n + 1 ∈ R + + 0\le\theta \le 1\\ x=(\widetilde{x},x_{n+1}) \ \ \widetilde{x}\in R^n \ \ x_{n+1}\in R_{++}\\ y=(\widetilde{y},y_{n+1}) \ \ \widetilde{y}\in R^n \ \ y_{n+1}\in R_{++} 0θ1x=(x ,xn+1)  x Rn  xn+1R++y=(y ,yn+1)  y Rn  yn+1R++
结论:
任意线段的透视仍然是线段。

例3:

任意凸集的反透视函数映射仍是凸集。
反透视函数,形如:
p − 1 ( c ) = { ( x , t ) ∈ R n + 1 ∣ x t ∈ c , t > 0 } p^{-1}(c)=\lbrace (x,t) \in R^{n+1}\mid \frac{x}{t}\in c,t>0\rbrace p1(c)={(x,t)Rn+1txc,t>0}

二、线性分数函数变化后也是凸。

可以理解为先仿射,再透视,不改变凸性。
线性分数函数,形如:
g ( x ) = [ A C T ] x + [ b d ] A ∈ R m × n    b ∈ R m    c ∈ R n    d ∈ R g(x)=\begin{bmatrix} A\\ C^T \end{bmatrix}x+ \begin{bmatrix} b\\ d \end{bmatrix}\\ A\in R^{m×n} \ \ b\in R^m \ \ c\in R^n \ \ d\in R g(x)=[ACT]x+[bd]ARm×n  bRm  cRn  dR
其中:
g = R n → R n + 1 g=R^n \rightarrow R^{n+1} g=RnRn+1
为仿射映射。

个人思考

这两天所学多是凸集保持凸性的操作,实质上是很重要的,因为凸问题本身要求可行解集是凸集。我们在进行可行解集处理的时候一定要注意不要改变本身的凸性。

纸质笔记

在这里插入图片描述

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值