图(Graph)上的Laplacian算子

Laplacian算子

Laplacian算子简单来说就是二阶导数
对于图上的拉普拉斯算子,我们要明确:
1.图上的函数是什么
2.图上的一阶导数是什么
3.图上的二阶导数是什么

定义

1.图上的函数定义为 f f f ,对于图上的任意节点 i i i , f ( i ) f(i) f(i) 为节点 i i i 上的出度

2. f f f 在节点 i i i 沿 j j j 出度方向的导数
f ′ ( i , j ) = f ( i ) − f ( j ) f'(i,j)=f(i)-f(j) f(i,j)=f(i)f(j)
3. f f f 在节点 i i i 上的二阶导数为:节点 i i i 出度方向的导数 - 所有节点 i i i 入度方向的导数
f ′ ′ ( i ) = ∑ m ∼ i f ′ ( i , m ) − ∑ i ∼ n f ′ ( n , i ) f''(i) = \sum_{m \sim i} f'(i,m) - \sum_{i \sim n} f'(n,i) f(i)=mif(i,m)inf(n,i)

公式自己编的感觉他们的表达方式都不对

举例

在这里插入图片描述
STEP 1.

f ( 1 ) = 3 f ( 2 ) = 0 f ( 3 ) = 1 f ( 4 ) = 0 f(1)=3 \quad f(2)=0 \quad f(3)=1 \quad f(4)=0 f(1)=3f(2)=0f(3)=1f(4)=0

STEP 2.

f ′ ( 1 , 2 ) = 3 f ′ ( 1 , 3 ) = 2 f ′ ( 1 , 4 ) = 3 f'(1,2)=3 \quad f'(1,3)=2 \quad f'(1,4)=3 f(1,2)=3f(1,3)=2f(1,4)=3
f ′ ( 3 , 4 ) = 1 f'(3,4)=1 f(3,4)=1

STEP 3.

f ′ ′ ( 1 ) = f ′ ( 1 , 2 ) + f ′ ( 1 , 3 ) + f ′ ( 1 , 4 ) = 3 + 2 + 3 = 8 f''(1)=f'(1,2)+f'(1,3)+f'(1,4)=3+2+3=8 f(1)=f(1,2)+f(1,3)+f(1,4)=3+2+3=8
f ′ ′ ( 2 ) = − f ′ ( 1 , 2 ) = − 3 f''(2)=-f'(1,2)=-3 f(2)=f(1,2)=3
f ′ ′ ( 3 ) = f ′ ( 3 , 4 ) − f ′ ( 1 , 3 ) = 1 − 2 = − 1 f''(3)=f'(3,4)-f'(1,3)=1-2=-1 f(3)=f(3,4)f(1,3)=12=1
f ′ ′ ( 4 ) = − f ′ ( 1 , 4 ) − f ′ ( 3 , 4 ) = − 3 − 1 = − 4 f''(4)=-f'(1,4)-f'(3,4)=-3-1=-4 f(4)=f(1,4)f(3,4)=31=4

一个比较有意思的推导

f = [ 3 0 1 0 ] f = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} f=3010 \quad 关联矩阵 K = [ 1 1 1 0 − 1 0 0 0 0 − 1 0 1 0 0 − 1 − 1 ] K = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 &0 & 0\\ 0 & -1 &0 & 1\\ 0 & 0 & -1 & -1 \end{bmatrix} K=1100101010010011

K T f = [ 1 − 1 0 0 1 0 − 1 0 1 0 0 − 1 0 0 1 − 1 ] [ 3 0 1 0 ] = [ f ′ ( 1 , 2 ) f ′ ( 1 , 3 ) f ′ ( 1 , 4 ) f ′ ( 3 , 4 ) ] = [ 3 2 3 1 ] K^Tf=\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 &-1 & 0\\ 1 & 0 &0 & -1\\ 0 & 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}=\begin{bmatrix} f'(1,2) \\ f'(1,3) \\ f'(1,4) \\ f'(3,4) \end{bmatrix}=\begin{bmatrix} 3 \\ 2 \\ 3 \\ 1 \end{bmatrix} KTf=11101000010100113010=f(1,2)f(1,3)f(1,4)f(3,4)=3231

K K T f = [ 1 1 1 0 − 1 0 0 0 0 − 1 0 1 0 0 − 1 − 1 ] [ f ′ ( 1 , 2 ) f ′ ( 1 , 3 ) f ′ ( 1 , 4 ) f ′ ( 3 , 4 ) ] = [ f ′ ( 1 , 2 ) + f ′ ( 1 , 3 ) + f ′ ( 1 , 4 ) − f ′ ( 1 , 2 ) − f ′ ( 1 , 3 ) + f ′ ( 3 , 4 ) − f ′ ( 1 , 4 ) − f ′ ( 3 , 4 ) ] = [ 8 − 3 − 1 4 ] KK^Tf=\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 &0 & 0\\ 0 & -1 &0 & 1\\ 0 & 0 & -1 & -1 \end{bmatrix}\begin{bmatrix} f'(1,2) \\ f'(1,3) \\ f'(1,4) \\ f'(3,4) \end{bmatrix}=\begin{bmatrix} f'(1,2) + f'(1,3) +f'(1,4) \\ -f'(1,2) \\ - f'(1,3) + f'(3,4) \\ -f'(1,4) - f'(3,4) \end{bmatrix} = \begin{bmatrix} 8 \\ -3 \\ -1 \\ 4 \end{bmatrix} KKTf=1100101010010011f(1,2)f(1,3)f(1,4)f(3,4)=f(1,2)+f(1,3)+f(1,4)f(1,2)f(1,3)+f(3,4)f(1,4)f(3,4)=8314

另一个比较有意思的推导

定义 D D D N ∗ N N*N NN 的度数矩阵(degree matrix)
D ( i , j ) = { d i , if  i = j   0 , otherwise D(i,j) = \begin{cases} d_i, & \text{if $i=j$ } \\ 0, & \text{otherwise} \end{cases} D(i,j)={di,0,if i=j otherwise
定义 A A A N ∗ N N*N NN 的邻接矩阵(adjacency matrix)
A ( i , j ) = { 1 , if  x i ∼ x j   0 , otherwise A(i,j) = \begin{cases} 1, & \text{if $x_i \sim x_j$ } \\ 0, & \text{otherwise} \end{cases} A(i,j)={1,0,if xixj otherwise
Laplacian算子可以写成
L = D − A = [ 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 2 ] − [ 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 ] = [ 3 − 1 − 1 − 1 − 1 1 0 0 − 1 0 2 − 1 − 1 0 − 1 2 ] L=D-A=\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 &0 & 0\\ 0 & 0 &2 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 &0 & 0\\ 1 & 0 &0 & 1\\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 &0 & 0\\ -1 & 0 &2 & -1\\ -1 & 0 & -1 & 2 \end{bmatrix} L=DA=30000100002000020111100010011010=3111110010211012
而:
K K T = [ 1 1 1 0 − 1 0 0 0 0 − 1 0 1 0 0 − 1 − 1 ] [ 1 − 1 0 0 1 0 − 1 0 1 0 0 − 1 0 0 1 − 1 ] = [ 3 − 1 − 1 − 1 − 1 1 0 0 − 1 0 2 − 1 − 1 0 − 1 2 ] KK^T=\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 &0 & 0\\ 0 & -1 &0 & 1\\ 0 & 0 & -1 & -1 \end{bmatrix}\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 &-1 & 0\\ 1 & 0 &0 & -1\\ 0 & 0 & 1 & -1 \end{bmatrix}=\begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 &0 & 0\\ -1 & 0 &2 & -1\\ -1 & 0 & -1 & 2 \end{bmatrix} KKT=11001010100100111110100001010011=3111110010211012

😉 拉普拉斯算子等于离散拉普拉斯矩阵

K K T = L = D − A KK^T=L=D-A KKT=L=DA

参考:
https://www.bilibili.com/video/av51204684?p=7
https://zhuanlan.zhihu.com/p/54505069

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值