Transformer模型拆解分析

资源来自:DataWhale 学习资料

        最近看了DataWhale 的Transformer图解,突然对Transformer的结构图有了更加清晰的理解,特此记录。

1、大框架

Transformer是由6个encoder和6个decoder组成,模型的具体实现是model变量里边,参数有Encoder[编码器]、Decoder[解码器]、Embedding(src_vocab)[输入文本进行词向量化]、Embedding(tgt_vocab)[目标文本进行词向量化],Generator[生成器]。

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    #多头注意力
    attn = MultiHeadedAttention(h, d_model)
    #前馈神经网络
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    #位置编码
    position = PositionalEncoding(d_model, dropout)
    #模型定义
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
    
    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

查看EncoderDecoder函数,搭建了一个seq2seq框架,即包含encoder和decoder,在EncoderDecoder函数中,变量src是输入文本,tgt是输出文本,src_mask是输入文本的掩码,tgt_mask是输出文本的掩码,memory是encoder的最终输出。

class EncoderDecoder(nn.Module):
    """
    基础的Encoder-Decoder结构。
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

2、Encoder

(1)clone

由于Transformer是有6个encoder组成,则使用clone函数进行EncodeLayer层的复制:

def clones(module, N):
    "产生N个完全相同的网络层"
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

(解释:nn.ModuleList 函数是保存子模块列表通过for循环,建立6个Encoder)

(2)Encoder

class Encoder(nn.Module):
    "完整的Encoder包含N层"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        "每一层的输入是x和mask"
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

Encoder需要进行“层归一化”,因此是在encoder建立之后进行了LayerNorm操作。

 (3)EncoderLayer

先介绍EncoderLayer层(一个编码器encoder),编码器的构成部分是self_Attention->SubLayerConnection(层归一化和残差连接)->FFNN->SubLayerConnection(层归一化和残差连接).

代码中,对SubLayerConnection复制两份,分别加入在self-Attention和FFNN之后。

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

(4)LayerNorm

‘层归一化’是该层的输入值进行对归一化处理,公式为a_2\ast \frac{x-mean}{std+eps}+b_2,层归一化分别在Encoder中的Attention(自身注意力)和FFNN(前馈神经网络)模块后。

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

(5)残差连接

所进行的操作时,对输入数据进行层归一化,然后进行sublayer操作,此时sublayer传入的操作是self.attn和self.feed_forward.

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

因为self-Attention和FFNN在encoder和decoder有异同,下边进行集中梳理。

3、Decoder

(1)Decoder

在Decoder中,也进行了clone操作,此处相较于encoder,多了一个memory和src、tgt的掩码mask。

class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

(2)DecoderLayer

相较于EncoderLayer层,多了一个attention操作,即self_attn是在decoder的注意力机制,即增加了mask机制,src_attn是encoder的输出结果,q是decoder层,k,v是encoder的输出。

 (模块1是self_attn,模块2是src_attn)

由于新增一个attention模块,SubLayerConnection就有三层,解码器的构成部分是self_Attention->SubLayerConnection(层归一化和残差连接)->src_Attention->SubLayerConnection(层归一化和残差连接)->FFNN->SubLayerConnection(层归一化和残差连接).

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

4、Embedding  src_vocab & tgt_vocab

Embedding是对文本进行词向量转换,调用函数为nn.Embedding,且进行了math.sqrt(self.d_model)操作。

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

5、额外实现

(1)self-Attention

  • Attention计算

目前,Atention机制的演变过程是加法和点积计算,加法计算是计算q,k的相似度,点积是计算q,k的点积,公式为点积计算。

在进行Attention计算时,特别注意mask参数, 当mask不为None时,则加入了Mask机制

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn
  • Multi-Head

只计算单个Attention很难捕捉输入句中所有空间的讯息,为了优化模型,论文提出了一个multi head的概念,把key,value,query线性映射到不同空间h次,但是在传入Scaled-Dot-Product Attention中时,需要固定的长度,因此再对head进行concat。

 代码如下:

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)

 定义了4个linear层,前三个分别对q,v,k进行分解,维度是(h,d_k,关系是d_model = h*d_k,h是head的数量),最后一个linear层是对多头的连接之后的数据进行线性变换。

  • mask机制

mask机制就是防止在训练的时候使用未来的输出的单词,确保对位置i的预测仅依赖于已知的位置i之前的输出,而不会依赖于位置i之后的输出。 比如训练时, 第一个单词是不能参考第二个单词的生成结果的。 mask就会把这个信息变成0, 用来保证预测位置 i 的信息只能基于比 i 小的输出;

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

生成一个上三角矩阵,令size=3,测试结果为

(2)FFNN

FFNN有两层线性变换,结构是linear->relu->dropout->linear。

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

(3)位置编码

        encoder的输入层和decoder的输入层是一样的结构,都是token embedding(词向量)+ positional embedding(位置向量),得到最终的输入向量。之所以引入positional embedding主要是解决单单使用token embedding(类似于词袋子),并没有词序的概念的问题。因为该模型并不包括任何的循环或卷积神经网络,所以模型添加了位置编码,为模型提供了关于单词再句子中相对位置的信息。这个向量能决定当前词的位置,或者说在一个句子中不同的词之间的距离。计算方法如下:

pos表示单词的位置,i是指单词的维度,偶数位置用正弦,奇数位置用余弦。

class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

squeeze和unsqueeze函数:对张量Tensor的维度进行压缩或者扩充!!!

6、实现顺序

(1)模拟数据

def data_gen(V, batch, nbatches):
    "Generate random data for a src-tgt copy task."
    for i in range(nbatches):
        data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10)))
        data[:, 0] = 1
        src = Variable(data, requires_grad=False)
        tgt = Variable(data, requires_grad=False)
        yield Batch(src, tgt, 0)

(2)批处理和掩码

class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

(3)模型优化

class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))
        
def get_std_opt(model):
    return NoamOpt(model.src_embed[0].d_model, 2, 4000,
            torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

(4)标签平滑

class LabelSmoothing(nn.Module):
    "Implement label smoothing."
    def __init__(self, size, padding_idx, smoothing=0.0):
        super(LabelSmoothing, self).__init__()
        self.criterion = nn.KLDivLoss(size_average=False)
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None
        
    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2))
        true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        return self.criterion(x, Variable(true_dist, requires_grad=False))

(5)损失函数计算

class SimpleLossCompute:
    "A simple loss compute and train function."
    def __init__(self, generator, criterion, opt=None):
        self.generator = generator
        self.criterion = criterion
        self.opt = opt
        
    def __call__(self, x, y, norm):
        x = self.generator(x)
        loss = self.criterion(x.contiguous().view(-1, x.size(-1)), 
                              y.contiguous().view(-1)) / norm
        loss.backward()
        if self.opt is not None:
            self.opt.step()
            self.opt.optimizer.zero_grad()
        return loss.item() * norm

(6)批次运行

def run_epoch(data_iter, model, loss_compute):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    for i, batch in enumerate(data_iter):
        out = model.forward(batch.src, batch.trg, 
                            batch.src_mask, batch.trg_mask)
        loss = loss_compute(out, batch.trg_y, batch.ntokens)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed = time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                    (i, loss / batch.ntokens, tokens / elapsed))
            start = time.time()
            tokens = 0
    return total_loss / total_tokens

(7)调用

# Train the simple copy task.
V = 11
#标签平滑
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0)
#定义模型
model = make_model(V, V, N=2)
#模型优化,采用Adam
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400,
        torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

#训练10次,并进行损失函数计算
for epoch in range(10):
    model.train()
    run_epoch(data_gen(V, 30, 20), model, 
              SimpleLossCompute(model.generator, criterion, model_opt))
    model.eval()
    print(run_epoch(data_gen(V, 30, 5), model, 
                    SimpleLossCompute(model.generator, criterion, None)))

参考教程:

1、learn-nlp-with-transformers/2.2.1-Pytorch编写Transformer.md at main · datawhalechina/learn-nlp-with-transformers · GitHub

(原文链接):The Annotated Transformer
2、Datawhale-零基础入门NLP-新闻文本分类Task06_樱缘之梦-CSDN博客

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Transformer模型是一种基于自注意力机制的神经网络模型,广泛应用于自然语言处理任务中,包括情感分析。它由Vaswani等人在2017年提出,被认为是一种革命性的模型,因为它在处理长文本时具有出色的性能。 Transformer模型的核心思想是通过自注意力机制来捕捉输入序列中不同位置之间的依赖关系。它不像传统的循环神经网络(RNN)或卷积神经网络(CNN)那样依赖于固定的窗口大小或顺序处理输入。相反,Transformer模型可以同时考虑整个输入序列,从而更好地捕捉全局上下文信息。 在情感分析任务中,Transformer模型可以将输入文本编码为一个向量表示,并通过该向量表示来预测文本的情感类别。通常情况下,Transformer模型会在输入序列的前面添加一个特殊的标记(如"[CLS]"),并使用该标记对整个序列进行分类。 Transformer模型的训练过程通常包括以下几个步骤: 1. 输入编码:将输入文本转换为词嵌入向量表示。 2. 位置编码:为每个输入位置生成位置编码向量,以捕捉输入序列中不同位置的信息。 3. 自注意力计算:通过计算输入序列中每个位置与其他位置的相关性得分,来获取每个位置的上下文信息。 4. 多层堆叠:将多个自注意力层和前馈神经网络层堆叠在一起,以增加模型的表达能力。 5. 输出预测:使用全连接层将最后一个位置的表示转换为情感类别的预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱缘之梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值