2022张宇考研基础30讲 第六讲 中值定理

第六讲 中值定理

介值定理

在这里插入图片描述
在这里插入图片描述

导数介值定理

在这里插入图片描述
证明:在这里插入图片描述

在这里插入图片描述
与函数的介值定理不同,函数的介值定理要求函数连续,但是在这里,只需要满足:
在这里插入图片描述
这一点即可。

这是因为

在这里插入图片描述

如果一个函数可导,那么这个导函数不可能存在跳跃间断点。
也不会存在可去间断点和无穷间断点(但是有可能会有振荡间断点,但是不会违背导数介值定理)

在这里插入图片描述
(因为即使是振荡间断点,也可以取得-1到1所有的值,因此不会违背导数介值定理)

平均值定理

在这里插入图片描述
例题:
在这里插入图片描述

在这里插入图片描述
看到多个相加的 用平均值定理,加起来除以个数。然后再用罗尔定理

在这里插入图片描述
积分中值定理还可以理解为平均值定理
在这里插入图片描述

费马定理

在这里插入图片描述
在这里插入图片描述
证明过程:
在这里插入图片描述
在这里插入图片描述

如果表达式大于或小于零 并且极限存在 则根据极限的保号性定理 极限的符号就等于表达式的符号

在这里插入图片描述
看到导数想到用定义,定义写出来后可以发现f(x)不是在端点而是在区间内取得最大值,说明存在极值,则可以用费马定理

由此可以引申出这样的一个结论:
在这里插入图片描述

罗尔定理

在这里插入图片描述
在这里插入图片描述
推广的罗尔定理可以直接使用

因此 证明某点导函数值为零可以有以下的思路:
在这里插入图片描述
除了这种考法,还有另外的考法:

构造辅助函数

在这里插入图片描述
例如:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对于1.6.6
在这里插入图片描述

应该把1移过去
然后可以发现
在这里插入图片描述
再例如
在这里插入图片描述

通用法则

在这里插入图片描述

例如1.6.6:
在这里插入图片描述

1.6.3:
在这里插入图片描述
第一种方法:

可以从需要证明的东西出发:
在这里插入图片描述
例如这个
在这里插入图片描述
移项后 构造

其实看到这个在这里插入图片描述可以想到积分中值定理(也就是平均值定理)

第二种方法:

出题人所给的提示就是在这里插入图片描述这个东西

因此这里可以构造函数:
在这里插入图片描述
令F(X)就等于这个

然后其实这两种方法只差了一个常数:
在这里插入图片描述

而常数对于求导来说没什么区别

1.6.6

在这里插入图片描述
在证第二问的时候遇到了困难,这时候困难就需要用到第一问的结论

在这里插入图片描述
另外一种考法,多次使用罗尔定理:

在这里插入图片描述
在上图 三次使用了罗尔定理:三点相同,就可以证二阶导等于零
例题:
在这里插入图片描述
需要用到的知识:

我们需要证明这个:在这里插入图片描述
根据下节的拉格朗日:
在这里插入图片描述
题目又给了积分:在这里插入图片描述
已知变限积分:

在这里插入图片描述
因此见到定积分想到这两种:
在这里插入图片描述
想到可以用拉格朗日:

在这里插入图片描述
但是总结下来可以知道第一问可以直接使用平均值定理:
在这里插入图片描述
在这里插入图片描述

第二问
在这里插入图片描述
同样用平均值定理

这样就可以得到三个相等的点,就可以使用过罗尔定理了在这里插入图片描述
然后使用三次罗尔定理

罗尔定理的难点在于构造函数和找相同的点

拉格朗日中值定理

在这里插入图片描述
在这里插入图片描述
特殊的0和1:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
因此,上面那题的那一问还可以这样写:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

观察这题所要证明的东西可以看到与罗尔定理有类似之处,说下区别:
首先拉格朗日可以推罗尔:
在这里插入图片描述

如果要证导数=0用罗尔,如果要证一阶导数等于一个函数值用拉格朗日

多次使用拉格朗日

在这里插入图片描述

证明两个不同的值相等的时候,不能在一个区间内使用拉格朗日,因为如果在一个区间内使用拉格朗日会导致两个值可能是相同的。此时需要划分区间,然后在不同的区间使用。


然后对其取倒数后可得:
在这里插入图片描述

那么接下来需要证明:
在这里插入图片描述

所以接下来只要取f(τ)=1/2即可
而根据介值定理 一定存在τ属于(0,1)使得f(τ)=1/2

所以如果是考研题会有个第一问:
在这里插入图片描述

柯西中值定理

在这里插入图片描述
(柯西不是由两次拉格朗日除法得出的)

另外 柯西中值定理考的较少
33年只有2000考过一次

在这里插入图片描述
柯西取g(x)=x可以推出拉格朗日
拉格朗日取f(a)=f(b)可以推出罗尔定理

(正好柯西的老师是拉格朗日,拉格朗日老师是罗尔,一代一代发扬光大tql)

例题:
在这里插入图片描述

泰勒公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
说到区间时用拉格朗日,说到极限时可用佩亚诺余项

并且还需要注意这两个定理成立的条件:
在这里插入图片描述
例题:
在这里插入图片描述

接下来看这题的第二问:
在这里插入图片描述

看到所要证明的东西中有积分和对称区间,我们联想到:

首先对于积分形式 有这样的一个关系:奇函数在对称区间积分和为零)
在这里插入图片描述

接下来在第一问的基础上,两边取积分:
在这里插入图片描述

在这里插入图片描述
接下来其实最关键的一步 就是用有界最值定理了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
1和2的联系:积分
2和3的联系:拉格朗日
2和4的联系:泰勒

  • 26
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 积分中值定理指出,在一个定义域内的某一函数的积分,可以通过在这个定义域中某一点上取函数值与定义域长度的乘积来近似计算,而微分中值定理则认为,在某一点上,函数的导数可以近似由函数在该点左右两点上取值的差值除以它们之间的距离所得。 ### 回答2: 积分中值定理和微分中值定理是微积分中两个重要的定理。 积分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上连续且可积,那么存在一个$\xi$在区间$(a, b)$内,使得$\int_a^b f(x)dx = f(\xi)(b-a)$。简单说,积分中值定理表明在一个连续函数的定积分中,一定存在某个点,使得该点的函数值与其定义域上的平均值相等。 微分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上可导且连续,那么存在一个$\xi$在开区间$(a, b)$内,使得$f'(\xi) = \frac{f(b)-f(a)}{b-a}$。简单说,微分中值定理表明在一个可导函数的导数中,一定存在某个点满足导数等于该函数在闭区间上的斜率。 两个定理的区别主要在于对象和定理的表达方式上。积分中值定理是关于函数在闭区间上定积分的取值与函数在内部某个点上的函数值之间的关系。而微分中值定理则是关于函数在闭区间上的导函数与函数在内部某个点上的斜率之间的关系。 ### 回答3: 积分中值定理和微分中值定理都属于微积分中的重要定理,但它们的应用对象不同,所表示的意义也有所差异。 积分中值定理是用来描述定积分的性质的定理,它指出如果一个函数在闭区间[a,b]上连续,并且满足一定的条件,那么在[a,b]上必然存在一点c,使得函数在c处的取值等于整个区间上函数的平均值。具体来说,对于函数f(x)在闭区间[a,b]上,存在一点c,使得∫[a,b]f(x)dx = (b-a)f(c)。 微分中值定理是用来描述导数的性质的定理,它指出如果一个函数在闭区间[a,b]上是可导的,并且满足一定的条件,那么在(a,b)内必然存在一点c,使得函数在c处的导数等于函数在该区间上两个端点的函数值的差与对应的导数的乘积的比值。具体来说,对于函数f(x)在闭区间[a,b]上可导,存在一点c,使得f'(c) = (f(b)-f(a))/(b-a)。 综上所述,积分中值定理和微分中值定理的不同主要体现在它们的应用对象和所代表的意义上。积分中值定理描述了整个区间上函数的平均值与函数在某一点处的关系,而微分中值定理描述了函数在某一区间上的导数与函数在该区间内两个端点处函数值的关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值