中值定理8-方程根讨论

方程根讨论

遇到方程根讨论的题目可以考虑使用以下方法:
1.零点定理
2.罗尔法
3.单调法

例题1:证 x 2 − 3 x + 1 = 0 至 少 一 个 正 根 x^2-3x+1=0至少一个正根 x23x+1=0

1.根据要证的结论构造辅助函数
f ( x ) = x 2 − 3 x + 1 f(x)=x^2-3x+1 f(x)=x23x+1
2.使用零点定理
∵ f ( 0 )   ⋅   f ( 1 ) &lt; 0 \because f(0)\ \cdot \ f(1)&lt;0 f(0)  f(1)<0
∃   c ∈ ( 0 , 1 ) . 使 得 f ( c ) = 0 \exists \ c \in (0,1).使得f(c)=0  c(0,1).使f(c)=0

罗尔法:
令结论= f ( x ) , 再 找 出 f ( x ) 的 原 函 数 F ( x ) . 使 得 F ′ ( x ) = f ( x ) f(x),再找出f(x)的原函数F(x).使得F&#x27;(x)=f(x) f(x)f(x)F(x).使F(x)=f(x)
F ( x ) 就 作 为 辅 助 函 数 F(x)就作为辅助函数 F(x)
找出两个点 a , b a,b a,b 使得 F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b)
根据罗尔定理 ∃   c ∈ ( a , b ) 使 得 F ′ ( c ) = 0 \exists \ c \in(a,b) 使得F&#x27;(c)=0  c(a,b)使F(c)=0
⇒ f ( c ) = 0 \Rightarrow f(c)=0 f(c)=0

例题2:已知: a 0 + a 1 2 + a 2 3 = 0 a_0+\frac{a_1}{2}+\frac{a_2}{3}=0 a0+2a1+3a2=0,证明: a 0 + a 1 x + a 2 x 2 = 0 至 少 一 个 正 根 a_0+a_1x+a_2x^2=0至少一个正根 a0+a1x+a2x2=0

1.令 f ( x ) = a 0 + a 1 x + a 2 x 2 f(x)=a_0+a_1x+a_2x^2 f(x)=a0+a1x+a2x2,那么原函数就是:

F ( x ) = a 0 x + a 1 2 x 2 + a 2 3 x 3 F(x)=a_0x+\frac{a_1}{2}x^2+\frac{a_2}{3}x^3 F(x)=a0x+2a1x2+3a2x3

2.找到两点0,1使得
F ( 0 ) = F ( 1 ) = 0 F(0)=F(1)=0 F(0)=F(1)=0

3.根据罗尔定理
∃   c ∈ ( 0 , 1 ) 使 得 F ′ ( c ) = 0 \exists \ c \in(0,1) 使得 F&#x27;(c)=0  c(0,1)使F(c)=0
∴ f ( c ) = 0 \therefore f(c)=0 f(c)=0
即: a 0 + a 1 x + a 2 x 2 = 0 a_0+a_1x+a_2x^2=0 a0+a1x+a2x2=0至少一个正根

单调法:

  1. 令辅助函数 f ( x ) = 要 证 的 结 论 f(x)=要证的结论 f(x)=,并标注 x x x的定义域
  2. 找极值点,一阶导数等于0,或者一阶导数不存在的点很有可能是极值点。
  3. 关注两侧,作草图

例题3:问: ln ⁡ x = x e − 2 有 多 少 个 根 ? \ln x =\frac{x}{e}-2有多少个根? lnx=ex2

1.构造辅助函数,标注 x x x的定义域

f ( x ) = ln ⁡ x − x e + 2 f(x)=\ln x-\frac{x}{e}+2 f(x)=lnxex+2 ( x &gt; 0 ) (x&gt;0) (x>0)

2.对辅助函数求导

f ′ ( x ) = 1 x − 1 e = 0 ⇒ x = e f&#x27;(x)=\frac{1}{x}-\frac{1}{e}=0 \Rightarrow x=e f(x)=x1e1=0x=e

一阶导数等于0的点很可能是极值点,所以令一阶导数等于0看一下

f ′ ′ ( x ) = − 1 x 2 ⇒ f ′ ′ ( e ) &lt; 0 f&#x27;&#x27;(x)=-\frac{1}{x^2} \Rightarrow f&#x27;&#x27;(e)&lt;0 f(x)=x21f(e)<0

根据单调性的第二充分条件判断: f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) &lt; 0 , ⇒ f ( x 0 ) 是 极 大 点 f&#x27;(x_0)=0,f&#x27;&#x27;(x_0)&lt;0,\Rightarrow f(x_0)是极大点 f(x0)=0,f(x0)<0,f(x0)
根据已证条件 f ′ ( e ) = 0 , f ′ ′ ( e ) &lt; 0 , ⇒ f ( e ) f&#x27;(e)=0,f&#x27;&#x27;(e)&lt;0,\Rightarrow f(e) f(e)=0,f(e)<0,f(e)是极大点,因为只有这一个极值点,所以 f ( e ) f(e) f(e)就是最大点

最大点: f ( e ) = 2 &gt; 0 f(e)=2&gt;0 f(e)=2>0

3.关注两侧
f ( 0 + 0 ) = − ∞ f(0+0)=-\infty f(0+0)=

lim ⁡ x → + ∞ f ( x ) = − ∞ \underset{x \to + \infty}{\lim} f(x) = -\infty x+limf(x)=

∴ f ( x ) 有 2 个 零 点 ⇒ 2 个 根 \therefore f(x)有2个零点 \Rightarrow 2个根 f(x)22

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值