如何求取串并联电路的等效电阻

最基本的串并联

求阻值最基本的方法就是串联和并联计算,如果直接能看出来串联和并联关系,那么就能直接计算,比如:

但是在实际电路中,单纯的电阻串联或并联是不多见的,更常见的是既有串联,又有并联,即电阻的混联电路。这时候我们不容易看出电路中的串并联关系,怎么办呢?

电位点(节点)的分裂与合并

我们考虑下电阻的串联和并联有什么特点?

串联的电阻都在同一条支路上,这个没什么好说的。

并联电路有什么特点呢?

并联电路的两端每一端都处于相同的电位点上,不管导线有多长或者多短。

这个特性很重要,因为如果两端都分别处于相同的电位点,那么这个点即可以分裂,也可以合并,并不影响原来的布局,只是更方便我们查看而已。

哪怕导线是像下面红色线这样连接的,也不影响其布局结构。

也就是说,一个电位点可以在其所在的无电阻支路上随意移动。

比如这个电路

我们将相同的电位点分裂下

只要稍微将电位点分裂下,就能更加清晰地知道串并联关系了。

再看这个图

只要将电位相同的点做个合并就能知道,其实就是从a点出发,然后经过R1R2并联,R3R4并联,然后二者再串联,最后再经过导线回到b。

这里的R5被短了,所有电流全从没有阻碍的导线上走掉了。

这种方式适用于电阻之间联接关系比较容易确定的场合。

上面的方法也不是每种情况都有用,有时候,根本就看不出来哪些点是电位相同点。

比如

就需要更多的方法来解决这些对应的问题了。

节点命名法

例如图4所示,各电阻的串、并联关系不是很清晰,对初学者来说,直接求解比较困难。所以,可将原始电路进行改画,使之成为电阻联接关系比较明显的电路,然后再进行计算。

具体方法步骤如下:

(1)找出电路各节点,并对其进行命名,如图5所示。

在找节点时需注意:

等电位点属于同一点,故不能重复命名,如上图的c点,它是由三个等电位点构成的,命名时必须将它们看成一点。

(2)将各节点画在一条水平线上,如图6所示。

布局各节点时需注意:为方便计算,最好将两端点分别画在两头,如图6的a、b两点。

(3)对号入座各电阻,画出新电路。即将各电阻分别画在对应节点之间,这样,就构成了一个与原始电路实质相同,而形式比较简单明了的新电路了,如图7所示。最后再求等效电阻。

此方法可称为节点命名法。它是分析电阻联接关系比较复杂电路的一种实用的方法。

其本质上,还是节点的分裂和合并。

注意,从不同的端口看去,等效电阻常常是不一样的。

上面的两种方法足以应付大多数的常规电路。 

我们来看看上面的这张图,看能否用节点命名法来分析等效电阻。

来画一画

注意,上面的a点和b点有三个同电位点,属于同一个节点,不要搞错了。

从上图能看出来,变换之后,依然看不出来各电阻的串并联关系。

那就只能继续找方法了。

……

垂直对称电路的等效电阻

我们观察下面的图

利用这个方法可以化简一些对称的串并联电路,注意,对称要完全对称,而不是形状上的对称,阻值上也要对称。

画出对称线后,切到的保留,剖到的拿走

因为切到的保留,我们也不能做什么,所以重点关注被剖到的。

先看最后一个图

这里15的电阻被剖到了,所以可以直接拿走。

就变成了这样:

之所以能拿走,是因为两侧对称,所以中间两点的电位是相同的,没有电压也就没有电流,相当于开路。

这样化简之后,就能看到更明显的串并联关系。

再看这个图

貌似没有被剖的电阻。

其实,这里的剖,并不一定是电阻,也可以剖“线”

根据等电位点的分裂和合并,可以将该电路最下面的点做个分裂,有两种分法:

可以看到,第二种分裂法,下面的连接线就被剖了。

所以,此时那根线可以去掉。

就变成了下面的等效图

这样,就能更好地看出串并联关系了。

再来看看这张图

这个电路图就是上下完全对称的,上下的阻值都一样。

所以,中间一条横线上的三个点,电位都是相同的,这样,两个7电阻两端的电压其实是0,也就没有电流流过,相当于开路。

因此,这个电路图等效图如下:

其实,画线后就知道对称线剖了这两个7电阻,所以可以直接拿掉。

水平对称电路的等效电阻

观察下方的电路图

像这种,直接连接两个端点,连线两侧完全对称的电路一般就叫做水平对称电路。

水平对称电路中,两个绿色点电位相同,两个黄色点电位相同。

因此,两侧电阻实际都是并联关系,据此可以算出并联电阻值,然后保留一侧。

如下:

化简后可以更好地看出串并联关系。

电桥结构求解等效电阻

上面两个对称电路的等效电阻的求解方法,是针对一些特殊情况的,并不具有普遍性。

下面介绍一种电桥结构电路。

常,如果电路中无法看出明显的串并联结构,就可以考虑下是不是存在电桥结构。

电桥结构的识别:

从目标端口看进去,其中好像是有两对电阻串联,但却刚好被一个电阻给割断了。

看看不同的画法,其本质都是电桥。

……

上面这几张图都是电桥结构。

根据我们对惠斯通电桥的了解,当R1/R2=R3/R4时,电桥处于平衡状态,此时R5处于断开状态,也就是说,可以直接去掉。

比如:

这时候,就能更好地看出串并联关系了。

再比如:

本质上就是两点电位相同。

这种方法仍然具有局限性,当电桥处于非平衡状态时,就没法处理了。

比如:

这时候怎么办呢?

三角形结构和星形结构的互换

三角形结构有时候就写成△结构;

星形结构有时候也叫做Y结构;

当我们用上面的办法都不能求解等效电阻时,就可以尝试将电路结构变一变,然后再去求解等效电阻。

关键是要记住红框里的规律,不能死记公式。

举例说明1

左边的电路中就有两个三角形结构,如右图所示

转换

此时,就能更好地看出串并联关系了。

举例说明2

这个图里其实也有Y形结构

这种变形其实是可以根据基尔霍夫定律推导出来的。

总结

1

上面的节点分裂与合并、节点命名法能解决大部分的常规电路;

2

垂直对称、水平对称、电桥结构适用于特殊场景,这三者的本质都是因为对称和比例相同所引申出的电位相同,然后可以去掉其中一些电阻或者连线;

3

三角形和星形结构是在电路中无法找到串并联关系时,尝试改变电路结构;

……

不管是哪种方法,都是为了让我们更好地看出电路中的串并联关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值