一文带你彻底拿下a,b两点间等效电阻

本文详细介绍了求解电路中两点间等效电阻的方法,包括两种计算步骤及实例解析,帮助读者掌握等效电阻的求解技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

对于涉及电路的专业课的同学们,关于求解两点间等效电阻是一个重点知识!接下来博主带你一文彻底拿下等效电阻问题!

前言

等效电阻的应用使得我们在进行电路简化计算中起到非常重要的作用,比如我们进行戴维南等效求等效电阻时,或者在三要素法中求解 τ =RC 时用到。

接下来博主带你拿下等效电阻问题!只要按着步骤走,一切问题都没有!

在这里插入图片描述

🐔等效电阻计算步骤

情况一: a,b两点间直接相连的电阻

  • 先找到直接相连的电阻
  • 然后基于这个直接相连的电阻,找到两个端点互相相连的电阻进行并联
  • 将各支路中首尾相连的电阻进行串联
  • 简化成功

情况二: a,b两点间没有直接相连的电阻

  • 从a,b端口开始标注每一个节点(给每个节点起名字,相同的节点起一样的名字)
  • 将两个端口相对应的电阻进行并联
  • 将相互串联的两个电阻进行合并
  • 简化成功

这种方法也可以求解第一种情况,这种方法属于万金油!

🐬实例讲解

🐸TEST 1

求取下图a,b间等效电阻

请添加图片描述

分析:
此题目可以用第一种方法求解,也可以用第二种。
第一种方法 : 我们看到a,b间有直接相连的电阻1,那么以1为基准,我们看到4和5是串联,所以两者相加为8Ω,我们看到3和6两个端点对应连接为并联,结果为2Ω,而且1和2也是并联关系为12/5,然后我们发现化简后就是8Ω串联上2Ω然后并联12/5Ω,最后Rab=2Ω。
在这里插入图片描述
第二种方法: 我们将各个节点进行标号,如上述图像所示,我们可以很轻松的看出来串并联,(1,2)和(3,6)并联,(4,5)串联,然后(4,5)整体与(3,6)串联,然后与(1,2)并联。
请添加图片描述

另法: 我们可以发现有两对节点是重合的,左上方的两个a和中间的两个b,这两对点是可以捏成一个点的。
我们可以将b,b线切开,分成两个线分别连接至b节点。

🐸TEST 2

请添加图片描述

解题思路: a,b之间没有直接相连的电阻,那么通过观察,我们可以看到电阻4的两端连接的节点相同即为被短接,电阻2和3的两端互相连接,所以2和3并联,最后a,b间电阻就是18Ω+6//3=20Ω
请添加图片描述

🦁总结

电阻等效的求法很多,大差不差就是找到并联部分,找到串联部分,其实电阻之间相连的是导线,导线可以移动,只要不破坏端点位置,我们可以任意移动,所以只要在我们移动后发现两个电阻为并联关系,我们可以直接进行并联等效。

### 红黑树概念 红黑树是一种特殊的二叉搜索树,具有特定的颜色属性来保持树的近似平衡状态。这种特性使得红黑树能够在插入、删除查找操作上提供较好的时复杂度[^1]。 #### 性质描述 每棵红黑树都遵循以下五条基本性质: - 每个节要么是红色,要么是黑色。 - 根节总是黑色。 - 所有叶子(NIL节)都是黑色。(注意这里的叶子指的是外部节) - 如果一个内部节是红色,则它的两个孩子节必须是黑色。(即不存在连续两条红线相连的情况) - 对于任意给定的非叶节,在该节到其可达叶子的所有路径上的黑色节数目相同。 这些规则确保了从根到最近叶子的最大距离不会超过最小距离的一倍以上,从而维持了一种较为均衡的状态[^3]。 ### 插入机制解析 当向红黑树中添加新的键值时,默认情况下新加入的节会被标记成红色以减少违反上述条件的可能性。然而即便如此仍可能出现冲突情况——比如父级也为红色就违背了第四条原则;这时就需要通过一系列调整动作使整棵树恢复合法形态,主要包括颜色翻转以及左旋/右旋两种方式[^2]。 ```c // 定义RBTree结构体表示整个红黑树, Node代表单个节. typedef struct RBTreeNode { int key; char color; // 'R' or 'B' struct RBTreeNode *left,*right,*parent; }Node; void insertFixup(Node* root, Node* z){ while (z != root && z->parent->color == RED) { ... } } ``` 此段伪代码展示了如何处理因插入而导致的不平衡状况的一部分逻辑流程,具体细节取决于实际应用场景下的需求设计。 ### 删除法概览 移除某个指定元素的过程相对更为复杂一些,除了要考虑常规BST中的前驱后继关系外还需特别关注被删去位置处所遗留下来的空缺是否会引起连锁反应进而影响全局稳定性。为此通常采用替换法先找到合适替代品再做进一步修正工作直至完全消除负面影响为止。 ```c Node* treeMinimum(Node* node){ while(node->left!=NULL)node=node->left; return node; } void deleteFixup(RBTree T, Node x){...} ``` 这里给出了一些辅助函数用于支持完整的删除功能实现,其中`treeMinimum()`用来获取某子树中最左侧的那个节作为候选接替者之一,“deleteFixup()”则负责后续必要的结构调整任务以确保存储结构依然符合预期标准。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一碗黄豆酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值