Labelme标注人体关键点数据

安装labelme后,进行安装

1、  选择到图片后

2、  图片矩形框的标注(注意要从左上开始选,然后选择右下结束)

3、  然后在矩形框内部选择关键点,注意,每个框内部的关键点都不可以出现在别的图像框内部

4、  标注后保存即可

        tip:

1、  标注完成后每个图片会对应个同名的 .json文件

2、  json中首先会展示标记框的label,是一个二维矩阵,包含标记框左上和右下的坐标位置。然后,跟着每个框,会显示每个关键点的label,每个关键点的坐标是一个向量,内部包含关键点的坐标

3、  所有的坐标位置数值都是图片中对应点的真实的位置

通过py文件读取,并将COCO格式的标注文件转换为YOLO格式

对应YOLO格式的数据形式

1、  YOLO格式对应为.txt文件

2、  每个txt文件中的内容如下:

id

cx

cy

w

h

x1

y1

v1

...

xn

yn

vn

其中id表示关键点的对应编号

cx,cy 分别对应框中心的横 纵坐标

w,h 分别对应边界框的宽和高

x1,y1, 表示关键点对应的坐标

v1 表示关键点是否可以显示(0 不可见,1 遮挡,2 可见不遮挡)

tip:

1、每行都对应一个标记框

2、所有的坐标和宽高,都经过图像长宽的归一化。也就是通过COCO数据格式的json文件中读到的坐标点都会对应长和宽,分别除以图片的实际长和宽。

<think>好的,我现在需要回答用户关于如何使用Labelme标注被遮挡关键点的问题。首先,我需要回忆Labelme的基本使用方法,尤其是关键点标注的部分。根据用户提供的引用内容,Labelme标注时需要先画一个矩形框,再标注关键点。那被遮挡的关键点应该如何处理呢? 首先,用户可能想知道的是,当关键点被其他物体或自身遮挡时,是否仍然需要标注,以及如何标注。根据引用[1]和[2],Labelme关键点坐标是包含在标记框内的向量。那么,被遮挡的关键点的位置可能需要估计,比如在人体的关节处,即使被衣服遮挡,也应该标注在正确的位置上。 然后,用户可能需要具体的步骤。例如,在标注时,是否需要在某个地方标记该关键点被遮挡?Labelme是否有这样的属性设置?根据引用[2],可能需要手动添加属性,比如“occluded”标签。或者,在标注时,使用不同的标签名称来区分遮挡情况,例如“left_eye_occluded”。 另外,用户可能关心数据转换的问题,比如转为YOLO格式时,被遮挡的关键点信息是否会保留。引用[2]提到json转YOLO的步骤,可能需要确认转换脚本是否处理了遮挡属性,或者在转换后的数据中如何表示被遮挡的关键点。 还需要考虑实际操作的例子,比如如何在Labelme界面中添加被遮挡的标记。可能需要指导用户右键关键点,添加属性,或者修改标签名称。如果Labelme本身不支持,可能需要建议用户使用额外的字段或注释来记录遮挡信息。 最后,应该提醒用户保持标注的一致性,比如团队协作时统一使用相同的标注方法,并在转换数据时确保遮挡信息不被丢失。可能还需要建议用户查看官方文档或社区讨论,寻找最佳实践。 总结回答的结构:首先说明处理被遮挡关键点的基本方法,然后分步骤讲解具体操作,包括标注步骤、属性设置、数据转换注意事项,最后强调一致性和验证的重要性。同时,引用提供的资料,特别是关于标记框和关键点坐标的部分,以及json转YOLO的相关内容。</think>### 如何使用Labelme标注被遮挡的关键点? #### 1. **标注被遮挡关键点的基本原则** - **估计位置**:即使关键点被遮挡,仍需根据目标结构(如人体骨骼、物体边缘)推测其理论位置并标注[^1]。 - **添加属性标识**:在Labelme中可为关键点添加自定义属性(如`occluded:true`),标注时右键关键点选择`Add Attribute`,输入遮挡状态[^2]。 #### 2. **具体操作步骤** 1. **绘制边界框**: 先用矩形框包裹目标(如人体),确保遮挡区域在框内。 2. **标注关键点**: - 击`Create Point`标注可见关键点。 - 对遮挡,同样击目标应处位置,标注后右键该添加属性(例如`occluded`)。 3. **属性设置示例**: ```json { "label": "left_shoulder", "points": [[x, y]], "occluded": true // 手动添加遮挡标识 } ``` #### 3. **数据转换注意事项** - **YOLO格式兼容性**: 转换工具(如`json2yolo`脚本)需自定义解析逻辑,将`occluded`属性映射到特定字段(如YOLO关键点格式的可见性标记`0/1`)[^2]。 - 示例YOLO数据: ```text class_id x_center y_center width height px1 py1 visible1 px2 py2 visible2 ... ``` #### 4. **标注一致性建议** - **团队协作规范**:统一遮挡属性的命名(如`occluded`或`visibility`),避免后续训练数据歧义。 - **可视化验证**:转换后通过脚本或工具检查遮挡关键点是否保留属性(如图像中标记为半透明)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值