之前有聊过SENet,这里附上论文链接
这里附上一个知乎链接,说的非常棒:SKnet
他可以很方便的嵌入到现在的网络结构中去,实现精度的提升。
首选介绍一下他的思想。
在神经网络中,每一层的感受野都是一样大小的,但是在人的视觉中,物体大小不同,感受野的大小会变化。那我们提出一个动态选择机制也可以认为是Soft attention,在CNNs中,允许每一个神经元根据输入信息的多尺度自适应调整其接受域大小。selective kernel(SK)模块被提出,他是使用非线性方法,将不同size的kernel聚合起来。不同size的kernel经由softMax attention,被混合到一起。对这些branch对attention不同,融合层中的感受野不一样大小。
它分为三个部分:split,fuse,select。它增加了一部分计算量,但同时也提高了精度。
split:分两路,一路3 * 3,一路5 * 5,借鉴了resnext,用了group/depthwise conv,为了减少计算量,用两个3 * 3代替5 * 5的卷积。
fuse:他的思想是,用gate来控制信息从不同的gate流入下一层
首先两branch
SKNET
最新推荐文章于 2024-04-20 16:10:07 发布
SKNet是一种在CNN中引入动态选择机制的方法,模仿人类视觉系统自适应调整感受野大小。通过split、fuse和select三个步骤,实现不同尺度的kernel聚合,提高网络的精度。在ResNeXt和 ShuffleNet等模型上展现出效果,但在MobileNet-v2中因参数增多而不适用。
摘要由CSDN通过智能技术生成