Image-Based Object Spoofifing Detection

Image-Based Object Spoofifing Detection

标签: 论文 spoofing


论文出处:Springer Nature Switzerland AG 2018

本文提出的方法

本文使用的是通过更改色彩空间提取可区分特征的方法进行欺诈检测的。整体架构如下:

image

之所以提出使用LUV以及Ycbcr是因为相比较RGB,二者多了一些亮度方面的信息,这样得到的特征更加具有可区分性:

image

实验结果

image

image

这个表可以作为以后查阅,里面写了很多在Replay上的对比方案,比如[6]是YaoJie Liu提出的用深度图监督方案,以及[31]的别的颜色空间方案。

收获

1、使用不同颜色空间可能达到意想不到的效果

参考文献重点摘录可作为以后读

对比方案

36.Menotti, D., et al.: Deep Representations for iris, face, and fifingerprint
spoofifing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015).
http://ieeexplore.ieee.org/document/7029061/

31.Li, L., Correia, P.L., Hadid, A.: Face recognition under spoofifing attacks:
countermeasures and research directions. IET Biom. 7(1), 3–14 (2018).
http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2017.0089

6.Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofifing using patch and
depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics
(IJCB), pp. 319–328. IEEE (2017). http://ieeexplore.ieee.org/document/8272713/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值