Kaggle竞赛Corporación Favorita Grocery Sales Forecasting方案总结

本文总结了Kaggle Corporación Favorita Grocery Sales Forecasting竞赛的前三名解决方案。第一名通过特征工程,如类别特征、时间窗口和促销信息,结合LightGBM和神经网络模型。第二名将销售预测建模为seq2seq问题,利用空洞卷积和双向LSTM处理促销信息。第三名使用LightGBM、CNN+DNN和seq2seq RNN模型的加权平均,特征工程包括类别编码和时间序列信息。所有解决方案都重视了促销信息的处理和验证集的划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一名解决方案:https://www.kaggle.com/c/favorita-grocery-sales-forecasting/discussion/47582

1.样本选择

仅采用2017年的数据提取特征和构建样本。

训练数据:20170531 - 20170719 or 20170614 - 20170719, 不同的模型采用不同的数据集。

验证集是20170726 - 20170810

2.预训练

用0填充缺失值。

3.特征工程

1)基本特征

   ·类别特征:商店、商品等。

   ·促销

   ·周几

2)数值特征

   ·时间窗口

      ·最近的天数:[1,3,5,7,14,30,60,140]

      ·相同的时间窗口:[1] * 16, [7] * 20…

      ·key:store x item, item, store x class

      ·target: promotion, unit_sales, zeros

      ·方法:

            mean, median, max, min, std

           days since last appearance

          difference of mean value between adjacent time windows(only

### 关于Kaggle Competition Sticker Sales Forecasting #### 数据集概述 数据集中包含了用于训练和测试的数据文件。这些文件具有相同的特征结构,参赛者需基于给定的时间序列和其他变量来预测未来的销售额[^4]。 #### 时间相关特征的重要性 时间相关特征对于销售预测至关重要。例如,在特定时间段内某些产品的销量会显著增加或减少。像冰淇淋这样的产品在夏季的销量通常较高,这表明了季节性和节假日等因素对销售的影响[^5]。 #### 特征工程 为了提高模型性能,可以考虑加入多种业务相关的特征,如价格变动、促销活动等。通过分析历史数据中的模式并将其转化为有用的输入信号,可以帮助捕捉到影响销售的关键因素。 #### 建模方法 建模过程中可借鉴其他类似竞赛的成功经验,如Corporación Favorita Grocery Sales Forecasting比赛中排名靠前团队所采用的技术路线。这类比赛往往涉及复杂的机器学习算法组合以及精心设计的特征提取过程[^3]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from lightgbm import LGBMRegressor # 加载数据 data = pd.read_csv('train.csv') # 处理缺失值与异常值 data.fillna(method='ffill', inplace=True) # 创建新特征(假设) data['month'] = data.date.dt.month data['day_of_week'] = data.date.dt.dayofweek # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split( data.drop(['id', 'date'], axis=1), data.target_sales, test_size=0.2, random_state=42 ) # 训练LightGBM回归器 model = LGBMRegressor() model.fit(X_train, y_train) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值