【LeetCode(Java) - 254】因子的组合

1、题目描述

在这里插入图片描述

2、解题思路

  题目要求因子的范围是 [2, n-1]。

  先对 n 开平方根取整数得到 sqrtN,那么,n 的因子中,一半因子小于等于 sqrtN,一半因子大于等于 sqrtN。

  于是我们只需要从 [2, sqrtN] 中找到一个因数 i,则另一个因数就是 n/i,即找到了一对因数。

  题意要返回所有的因子组合,于是我们可以对两个因子进行递归拆分,最后合并。

  以 n == 16 为例:

  n 开平方根为 4,于是先从 [2, 4] 区间找因子,只要能整除 16,就是因子,于是找到了 2 和 4。

  当一个因子为 2 时,另一个因子为 16/2 = 8;

  当一个因子为 4 时,另一个因子为 16/4 = 4;

  于是找到了因子组合:{2,8}、{4,4}。

  每确定一个因子组合,都对第二个数字进行拆分,比如 {2,8} 需要对 8 进行拆分,8 的因子不能小于和它配对的 2。

  于是问题又变成:找数字 8 的区间在 [2, 7] 的因子,按照一样的递归计算。

  8 的因子组合为 {4,2}、{2,2,2}。

  给 8 的因子组合都舔加一个它的搭档,这里是 2,就是 16 的因子组合了:

  {4,2,2}、{2,2,2,2}

  所以 16 的因子组合为:{2,8}、{2,4,2,2}、{2,2,2,2}

  对于 {4,4} 同理,对第二个 4 进行拆分,4 的因子不能小于和它配对的 4,发现没有小于 4 的因数。

  综合,16 的因子组合为 {2,8}、{2,4,2,2}、{2,2,2,2}、{4,4}

3、解题代码

class Solution {

    public List<List<Integer>> getFactors(int n) {
        return dfs(2, n);
    }

    /**
     * 大于等于 start 的 num 的因子组合
     * @param start
     * @param num
     * @return
     */
    public static List<List<Integer>> dfs(int start, int num) {
        if (num == 1) {
            return new ArrayList<>();
        }
        // C = A × B,则 A 和 B 一个小于等于根号 C,一个大于等于根号 C
        int qNum = (int) Math.sqrt(num);
        List<List<Integer>> result = new ArrayList<>();
        // 找出 [start, 根号num] 中,是 num 因子的数字
        for (int i = start; i <= qNum; i++) {
            if (num % i == 0) { // 找到一个因子
                List<Integer> simpleList = new ArrayList<>();
                simpleList.add(i);  // 小于或等于根号 num 的因子
                simpleList.add(num / i);    // 大于或等于根号 num 的因子
                result.add(simpleList); // 找到一对因子
                // 检查大于等于根号 num 的因子能怎么拆
                List<List<Integer>> nextLists = dfs(i, num / i);
                for (List<Integer> list : nextLists) {
                    list.add(i);    // list 的元素相乘是 num/i ,舔一个 i,相乘就是 num
                    result.add(list);
                }
            }
        }
        return result;
    }
}
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页