SVM23问
1、SVM中的推导过程?推导到对偶问题!
2、硬间隔和软间隔如何定义?软间隔中的惩罚系数表示?
3、SVM的硬间隔和软间隔表达式?
4、SVM使用对偶计算的目的是什么?
5、线性可分、近似线性可分、线性不可分的定义?
6、什么是KKT条件?
7、怎么理解SMO算法?
8、是不是所有的优化都可以转换成对偶关系?
9、SVM引入拉格朗日算子之后原问题其实就可以求解,为什么要转换成对偶问题,两者的适用情况分别是什么?
10、SVM和全部数据有关还是和局部数据有关?
11、讲一讲SVM的损失函数?为什么要用Hinge Loss?
12、什么是支持向量?
13、什么是松弛变量?松弛变量提出的意义?
14、常用核函数及核函数的条件?写出核函数公式?
15、拉格朗日乘子法能否求解非凸的目标函数问题?
16、带核函数的SVM为什么能分类非线性问题?
17、SVM和LR哪个更容易过拟合,当数据不平衡时SVM会发生什么情况?
18、SVM和LR的区别?什么时候采用SVM,什么时候采用LR?
19、SVM怎么防止过拟合?
20、SVM如何做回归?
21、KKT条件有哪些?
22、SVM的优缺点?
23、SVM的分类间隔是多少?
更多内容请关注公众号【3D视觉工坊】,欢迎一起交流学习~