非常详细的机器学习知识点汇总(二)之SVM23问

SVM23问

1、SVM中的推导过程?推导到对偶问题!

2、硬间隔和软间隔如何定义?软间隔中的惩罚系数表示?

3、SVM的硬间隔和软间隔表达式?

4、SVM使用对偶计算的目的是什么?

5、线性可分、近似线性可分、线性不可分的定义?

6、什么是KKT条件?

7、怎么理解SMO算法?

8、是不是所有的优化都可以转换成对偶关系?

9、SVM引入拉格朗日算子之后原问题其实就可以求解,为什么要转换成对偶问题,两者的适用情况分别是什么?

10、SVM和全部数据有关还是和局部数据有关?

11、讲一讲SVM的损失函数?为什么要用Hinge Loss?

12、什么是支持向量?

13、什么是松弛变量?松弛变量提出的意义?

14、常用核函数及核函数的条件?写出核函数公式?

15、拉格朗日乘子法能否求解非凸的目标函数问题?

16、带核函数的SVM为什么能分类非线性问题?

17、SVM和LR哪个更容易过拟合,当数据不平衡时SVM会发生什么情况?

18、SVM和LR的区别?什么时候采用SVM,什么时候采用LR?

19、SVM怎么防止过拟合?

20、SVM如何做回归?

21、KKT条件有哪些?

22、SVM的优缺点?

23、SVM的分类间隔是多少?

更多内容请关注公众号【3D视觉工坊】,欢迎一起交流学习~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值