CycleGAN算法原理(附源代码,可直接运行)

CycleGAN是一种无配对图像转换的生成对抗网络,能够实现不同领域间的图像转换,如苹果到橘子,猫到狗等。该算法通过两个生成器和两个判别器避免单一映射,确保多样性。实验结果显示,CycleGAN能够有效改变图像颜色和模式。
摘要由CSDN通过智能技术生成

前言

CycleGAN是在今年三月底放在arxiv(论文地址CycleGAN)的一篇文章,文章名为Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,同一时期还有两篇非常类似的DualGAN(论文地址:DualGAN)和DiscoGAN(论文地址:DiscoGAN),简单来说,它们的功能就是:自动将某一类图片转换成另外一类图片。不同于GAN和CGAN(上节已经介绍过),CycleGAN不需要配对的训练图像。当然了配对图像也完全可以,不过大多时候配对图像比较难获取。

这里写图片描述
这里写图片描述
配对图像
这里写图片描述
未配对的图像

CycleGAN能做什么?

CycleGAN可以完成GAN和CGAN的工作,如上述配对图像所示,可以从一个特定的场景模式图生成另外一个场景模式图,这两张场景模式中的物体完全相同。除此之外,CycleGAN还可以完成从一个模式到另外一个模式的转换,转换的过程中,物体发生了改变,比如下面的图像中从猫到狗,从男人到女人。

这里写图片描述
这里写图片描述

CycleGAN算法原理

如下图所示CycleGAN其实是由两个判别器( Dx D x D

CycleGAN是一个无监督的像转换模型,可以将一种领域的像转换成另一种领域的像,而无需手动标注数据集。其核心思想是通过两个生成器和两个判别器,来实现两个领域之间的像转换。下面我们来看一下CycleGAN源代码解读。 CycleGAN的主要代码在`models`文件夹下,其中`cycle_gan_model.py`定义了CycleGAN的模型结构,`networks.py`定义了生成器和判别器的网络结构。其中生成器采用U-Net结构,判别器采用PatchGAN结构。`options`文件夹下的`base_options.py`定义了模型的一些基本参数,包括训练数据路径、模型保存路径、学习率等。`train_options.py`继承了`base_options.py`,并添加了一些训练相关的参数,比如迭代次数、是否使用L1损失等。`test_options.py`同样继承了`base_options.py`,并添加了一些测试相关的参数,比如测试数据路径、输出结果路径等。 在`train.py`文件中,我们可以看到CycleGAN的训练流程。首先定义了模型、数据加载器、优化器等,然后开始训练。在训练过程中,先通过生成器将A领域的片转换成B领域的片,然后将转换后的片与B领域的真实片送入判别器,计算判别器的损失。同时,也计算生成器的损失,包括对抗损失、循环一致性损失和L1损失。最后通过反向传播更新生成器和判别器的参数。 在`test.py`文件中,我们可以看到CycleGAN的测试流程。首先定义了模型和数据加载器,然后通过生成器将A领域的片转换成B领域的片,并将转换后的片保存到输出结果路径中。 总之,CycleGAN源代码实现了一个完整的无监督像转换模型,包括模型结构、数据加载、训练和测试流程。如果想要深入了解CycleGAN,可以从源代码入手,逐步理解其实现原理
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值