前言
CycleGAN是在今年三月底放在arxiv(论文地址CycleGAN)的一篇文章,文章名为Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,同一时期还有两篇非常类似的DualGAN(论文地址:DualGAN)和DiscoGAN(论文地址:DiscoGAN),简单来说,它们的功能就是:自动将某一类图片转换成另外一类图片。不同于GAN和CGAN(上节已经介绍过),CycleGAN不需要配对的训练图像。当然了配对图像也完全可以,不过大多时候配对图像比较难获取。


配对图像

未配对的图像
CycleGAN能做什么?
CycleGAN可以完成GAN和CGAN的工作,如上述配对图像所示,可以从一个特定的场景模式图生成另外一个场景模式图,这两张场景模式中的物体完全相同。除此之外,CycleGAN还可以完成从一个模式到另外一个模式的转换,转换的过程中,物体发生了改变,比如下面的图像中从猫到狗,从男人到女人。


CycleGAN算法原理
如下图所示CycleGAN其实是由两个判别器( Dx D x 和 D