Pytorch - 分布式通信原语(附源码)

作者丨颜挺帅@知乎(已授权)

来源丨https://zhuanlan.zhihu.com/p/478953028

编辑丨极市平台

导读

 

本文用通过pytorch中的分布式原语库来介绍每个通信原语的行为表现,主要对point-2-point communication 和collective communication两种通信方式进行介绍,并附有相关代码。

前言

由于工作需要,最近在补充分布式训练方面的知识。经过一番理论学习后仍觉得意犹未尽,很多知识点无法准确get到(例如:分布式原语scatter、all reduce等代码层面应该是什么样的,ring all reduce 算法在梯度同步时是怎么使用的,parameter server参数是如何部分更新的)。

著名物理学家,诺贝尔奖得主Richard Feynman办公室的黑板上写了:"What I cannot create, I do not understand."。在程序员界也经常有"show me the code"的口号。因此,我打算写一系列的分布式训练的文章,将以往抽象的分布式训练的概念以代码的形式展现出来,并保证每个代码可执行、可验证、可复现,并贡献出来源码让大家相互交流。

经过调研发现pytorch对于分布式训练做好很好的抽象且接口完善,因此本系列文章将以pytorch为主要框架进行,文章中的例子很多都来自pytorch的文档,并在此基础上进行了调试和扩充。

最后,由于分布式训练的理论介绍网络上已经很多了,理论部分的介绍不会是本系列文章的重点,我会将重点放在代码层面的介绍上面。

1 基本介绍

近些年随着深度学习的火爆,模型的参数规模也飞速增长,OpenAI数据显示:

  • 2012年以前,模型计算耗时每2年增长一倍,和摩尔定律保持一致;

  • 2012年后,模型计算耗时每3.4个月翻一倍,远超硬件发展速度;

近一年来,百亿、千亿级的参数模型陆续面世,谷歌、英伟达、阿里、智源研究院更是发布了万亿参数模型。因此,大模型已经成为了未来深度学习的趋势。提到大模型,就不得不提分布式训练,由于模型参数和训练数据的不断增多,只有通过分布式训练才能完成大模型的训练任务。

分布式训练可以分为数据并行、模型并行,流水线并行和混合并行。分布式算法又有典型的parameter server和ring all-reduce。无论是哪一种分布式技术一个核心的关键就是如何进行communication,这是实现分布式训练的基础,因此要想掌握分布式训练或当前流行的大模型训练务必对worker间的通信方式有所了解。

互联网上已经有很多关于分布式训练的通信方面的文章,但是均没有代码层面的例子。我是属于比较愚钝类型的,只有通过自己手动实现一下方能对一些抽象的概念有较深的理解。

Pytorch的分布式训练的通信是依赖torch.distributed模块来实现的,torch.distributed提供了point-2-point communication 和collective communication两种通信方式。

  • point-2-point communication提供了send和recv语义,用于任务间的通信

  • collective communication主要提供了scatter/broadcast/gather/reduce/all_reduce/all_gather 语义,不同的backend在提供的通信语义上具有一定的差异性。

DeviceCPUGPUCPUGPUCPUGPU
send?
recv?
broadcast?
all_reduce?
reduce?
all_gather?
gather?
scatter?
reduce_scatter
all_to_all?
barrier?

2 P2P communication

下面通过torch.distributed的send/recv接口实现一个简易的ping-pong 程序。程序功能如下:

  • tensor 初始值为0

  • process 0 (或叫rank 0):对tensor加1,然后发送给process 1(或叫rank1);

  • process 1:接收到tensor后,对tensor 加2,然后在发送给process 0;

  • process 0:接收process1发送的tensor;

f5639152e3906d21e70c148478b3c0ea.png

2.1 初始化

pytorch中在分布式通信原语使用之前,需要对分布式模块进行初始化。pytorch的分布式模块通过torch.distributed.init_process_group来完成

  • 通过环境变量MASTER_ADDRMASTER_PORT设置rank0的IP和PORT信息,rank0的作用相当于是协调节点,需要其他所有节点知道其访问地址;

  • 本例中后端选择的是gloo,通过设置NCCL_DEBUG环境变量为INFO,输出NCCL的调试信息;

  • init_process_group:执行网络通信模块的初始化工作

    • backend:设置后端网络通信的实现库,可选的为gloo、nccl和mpi;本例选择gloo作为backend(注:nccl不支持p2p通信,mpi需要重新编译pytorch源码才能使用);

    • rank:为当前rank的index,用于标记当前是第几个rank,取值为0到work_size - 1之间的值;

    • world_size: 有多少个进程参与到分布式训练中;

def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)

2.2 通信逻辑

下面的代码展示了rank0和rank1进行ping-pong通信的实现:

  • 通过rank_id来区分当前应该执行哪一个rank的业务逻辑;

  • pytorch 中通过torch.distributed.send(tensor, dst, group=None, tag=0) 和torch.distributed.isend(tensor, dst, group=None, tag=0) 来实现tensor的发送,其中send是同步函数,isend是异步函数;

    • tensor:要发送的数据

    • dst:目标rank,填写目标rank id即可

  • pytorch中通过torch.distributed.recv(tensor, src=None, group=None, tag=0)torch.distributed.irecv(tensor, src=None, group=None, tag=0)来实现tensor的接收,其中recv是同步函数,irecv是异步函数;

    • tensor:接收的数据

    • src:接收数据来源的rank id

def run(rank_id, size):
    tensor = torch.zeros(1)
    if rank_id == 0:
        tensor += 1
        # Send the tensor to process 1
        dist.send(tensor=tensor, dst=1)
        print('after send, Rank ', rank_id, ' has data ', tensor[0])
        
        dist.recv(tensor=tensor, src=1)
        print('after recv, Rank ', rank_id, ' has data ', tensor[0])
    else:
        # Receive tensor from process 0
        dist.recv(tensor=tensor, src=0)
        print('after recv, Rank ', rank_id, ' has data ', tensor[0])
        
        tensor += 1
        dist.send(tensor=tensor, dst=0)
        print('after send, Rank ', rank_id, ' has data ', tensor[0])

2.3 任务启动

通过下面的代码来启动两个process进行ping-pong通信:

  • 这里使用torch.multiprocessing来启动多进程,torch.multiprocessing是python库中multiprocessing的封装,并且兼容了所有的接口

  • multiprocessing.set_start_method : 用于指定创建child process的方式,可选的值为forkspawnforkserver。使用spawn,child process仅会继承parent process的必要resource,file descriptor和handle均不会继承。

  • multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None) :用来启动child process

if __name__ == "__main__":
    size = 2
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

2.4 测试

完整代码如下:

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.zeros(1)
    if rank_id == 0:
        tensor += 1
        # Send the tensor to process 1
        dist.send(tensor=tensor, dst=1)
        print('after send, Rank ', rank_id, ' has data ', tensor[0])
        dist.recv(tensor=tensor, src=1)
        print('after recv, Rank ', rank_id, ' has data ', tensor[0])
    else:
        # Receive tensor from process 0
        dist.recv(tensor=tensor, src=0)
        print('after recv, Rank ', rank_id, ' has data ', tensor[0])
        tensor += 1
        dist.send(tensor=tensor, dst=0)
        print('after send, Rank ', rank_id, ' has data ', tensor[0])


def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)

执行效果如下:

root@g48r13:/workspace/communication# python sync_p2p.py
after send, Rank  0  has data  tensor(1.)
after recv Rank  1  has data  tensor(1.)
after send Rank  1  has data  tensor(2.)
after recv, Rank  0  has data  tensor(2.)

3 collective communication

3.1 broadcast

070d55f87d907bdf7f3ad2e18854a176.png

broadcast的计算方式如上图所示。

在pytorch中通过torch.distributed.broadcast(tensor, src, group=None, async_op=False) 来broadcast通信。

  • 参数tensor在src rank是input tensor,在其他rank是output tensor;

  • 参数src设置哪个rank进行broadcast,默认为rank 0;

使用方式如下面代码所示:

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before broadcast',' Rank ', rank_id, ' has data ', tensor)
    dist.broadcast(tensor, src = 0)
    print('after broadcast',' Rank ', rank_id, ' has data ', tensor)




def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

输出内容为:

  • 一共有4个rank参与了broadcast计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8]

  • broadcast计算之后,所有rank的结果均rank0的tensor即[1, 2](因为在调用torch.distributed.broadcast时src设置为0,表示rank0进行broadcast)

before broadcast  Rank  1  has data  tensor([3, 4])
before broadcast  Rank  0  has data  tensor([1, 2])
before broadcast  Rank  2  has data  tensor([5, 6])
before broadcast  Rank  3  has data  tensor([7, 8])
after broadcast  Rank  1  has data  tensor([1, 2])
after broadcast  Rank  0  has data  tensor([1, 2])
after broadcast  Rank  2  has data  tensor([1, 2])
after broadcast  Rank  3  has data  tensor([1, 2])

3.2 scatter

06e6fe40580ad1a21f6c2adba8f19177.png

scatter的计算方式如上图所示。

在pytorch中通过torch.distributed.scatter(tensor, scatter_list=None, src=0, group=None, async_op=False) 来实现scatter通信。

  • 参数tensor为除 src rank外,其他rank获取output tensor的参数

  • scatter_list为进行scatter计算tensor list

  • 参数src设置哪个rank进行scatter,默认为rank 0;

使用方式如下面代码所示:

  • 这里需要注意的是,仅有src rank才能设置scatter_list( 本例中为rank 0),否则会报错

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before scatter',' Rank ', rank_id, ' has data ', tensor)
    if rank_id == 0:
        scatter_list = [torch.tensor([0,0]), torch.tensor([1,1]), torch.tensor([2,2]), torch.tensor([3,3])]
        print('scater list:', scatter_list)
        dist.scatter(tensor, src = 0, scatter_list=scatter_list)
    else:
        dist.scatter(tensor, src = 0)
    print('after scatter',' Rank ', rank_id, ' has data ', tensor)




def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

输出内容为:

  • 一共有4个rank参与了scatter计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8],scatter list为[0,0], [1,1], [2,2], [3,3];

  • scatter计算之后,rank按顺序被分配scatter list的每一个tensor, rank0为[0,0], rank1为 [1, 1] , rank2为 [2, 2], rank3[3, 3];

root@g48r13:/workspace/communication# python scatter.py
before scatter  Rank  1  has data  tensor([3, 4])
before scatter  Rank  0  has data  tensor([1, 2])
before scatter  Rank  2  has data  tensor([5, 6])
scater list: [tensor([0, 0]), tensor([1, 1]), tensor([2, 2]), tensor([3, 3])]
before scatter  Rank  3  has data  tensor([7, 8])
after scatter  Rank  1  has data  tensor([1, 1])
after scatter  Rank  0  has data  tensor([0, 0])
after scatter  Rank  3  has data  tensor([3, 3])
after scatter  Rank  2  has data  tensor([2, 2])

3.3 gather

7192ee2b75118dbb48ddd8dd36f613dc.png

gather计算方式如上图所示。在pytorch中通过torch.distributed.gather(tensor, gather_list=None, dst=0, group=None, async_op=False) 来实现gather的通信;

  • 参数tensor是所有rank的input tensor

  • gather_list是dst rank的output 结果

  • dst为目标dst

使用方式如下:

  • 这里需要注意的是在rank 0(也就是dst rank)中要指定gather_list,并且要在gather_list构建好的tensor,否是会报错

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before gather',' Rank ', rank_id, ' has data ', tensor)
    if rank_id == 0:
        gather_list = [torch.zeros(2, dtype=torch.int64) for _ in range(4)]
        dist.gather(tensor, dst = 0, gather_list=gather_list)
        print('after gather',' Rank ', rank_id, ' has data ', tensor)
        print('gather_list:', gather_list)
    else:
        dist.gather(tensor, dst = 0)
        print('after gather',' Rank ', rank_id, ' has data ', tensor)

def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

输出内容如下:

  • 一共有4个rank参与了gather计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8]

  • gather计算之后,gather_list的值为[tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]

root@g48r13:/workspace/communication# python gather.py
before gather  Rank  0  has data  tensor([1, 2])
before gather  Rank  3  has data  tensor([7, 8])
after gather  Rank  3  has data  tensor([7, 8])
before gather  Rank  1  has data  tensor([3, 4])
before gather  Rank  2  has data  tensor([5, 6])
after gather  Rank  1  has data  tensor([3, 4])
after gather  Rank  2  has data  tensor([5, 6])
after gather  Rank  0  has data  tensor([1, 2])
gather_list: [tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]

3.4 reduce

c815ba532c511dc23ea6a317f0899e66.png

reduce的计算方式如上图所示。在pytorch中通过torch.distributed.reduce(tensor, dst, op=<ReduceOp.SUM: 0>, group=None, async_op=False)来实现reduce通信;

  • 参数tensor是需要进行reduce计算的数据,对于dst rank来说,tensor为最终reduce的结果

  • 参数dist设置目标rank的ID

  • 参数op为reduce的计算方式,pytorch中支持的计算方式有SUM, PRODUCT, MIN, MAX, BAND, BOR, and BXOR

使用方式如下:

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before reudce',' Rank ', rank_id, ' has data ', tensor)
    dist.reduce(tensor, dst = 3, op=dist.ReduceOp.SUM,)
    print('after reudce',' Rank ', rank_id, ' has data ', tensor)


def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

执行结果如下:

  • 一共有4个rank参与了gather计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8];dst rank设置为3

  • 可见rank 3为reduce sum计算的最终结果;

  • 需要注意这里有个副作用,就是rank 0、rank 1和rank 2的tensor也会被修改

root@g48r13:/workspace/communication# python reduce.py
before reudce  Rank  3  has data  tensor([7, 8])
before reudce  Rank  0  has data  tensor([1, 2])
before reudce  Rank  2  has data  tensor([5, 6])
before reudce  Rank  1  has data  tensor([3, 4])
after reudce  Rank  1  has data  tensor([15, 18])
after reudce  Rank  0  has data  tensor([16, 20])
after reudce  Rank  3  has data  tensor([16, 20]) # reduce 的最终结果
after reudce  Rank  2  has data  tensor([12, 14])

3.5 all-gather

f7a77773d77cbabcf974a6d109c7de65.png

all-gather计算方式如上图所示。在pytorch中通过torch.distributed.all_gather(tensor_list, tensor, group=None, async_op=False)来实现。

  • 参数tensor_list,rank从该参数中获取all-gather的结果

  • 参数tensor,每个rank参与all-gather计算输入数据

使用方式如下:

  • 同gather的使用方式基本一样,区别是all_gather中每个rank都要指定gather_list,并且要在gather_list构建好的tensor,否是会报错;

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before gather',' Rank ', rank_id, ' has data ', tensor)
    gather_list = [torch.zeros(2, dtype=torch.int64) for _ in range(4)]
    dist.all_gather(gather_list, tensor)
    print('after gather',' Rank ', rank_id, ' has data ', tensor)
    print('after gather',' Rank ', rank_id, ' has gather list ', gather_list)


def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

执行结果如下:

  • 一共有4个rank参与了gather计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8];

  • 执行完gather_list后,每个rank均可以拿到最终gather_list的结果

root@g48r13:/workspace/communication# python all_gather.py
before gather  Rank  0  has data  tensor([1, 2])
before gather  Rank  2  has data  tensor([5, 6])
before gather  Rank  3  has data  tensor([7, 8])
before gather  Rank  1  has data  tensor([3, 4])
after gather  Rank  1  has data  tensor([3, 4])
after gather  Rank  0  has data  tensor([1, 2])
after gather  Rank  3  has data  tensor([7, 8])
after gather  Rank  2  has data  tensor([5, 6])
after gather  Rank  1  has gather list  [tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]
after gather  Rank  0  has gather list  [tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]
after gather  Rank  3  has gather list  [tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]
after gather  Rank  2  has gather list  [tensor([1, 2]), tensor([3, 4]), tensor([5, 6]), tensor([7, 8])]

3.6 all-reduce

9cba5195775b1b2b40c832a7d652f38d.png

all-reduce计算方式如上图所示。在pytorch中通过torch.distributed.all_reduce(tensor, op=<ReduceOp.SUM: 0>, group=None, async_op=False) 来实现all-reduce的调用;

使用方式如下面代码所示

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank_id, size):
    tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank_id
    print('before reudce',' Rank ', rank_id, ' has data ', tensor)
    dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
    print('after reudce',' Rank ', rank_id, ' has data ', tensor)


def init_process(rank_id, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank_id, world_size=size)
    fn(rank_id, size)


if __name__ == "__main__":
    size = 4
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

输出内内容为:

  • 一共有4个rank参与了all-reduce计算,计算之前:rank0 为[1, 2],rank1 为[3, 4], rank2为[5, 6], rank3为[7, 8]

  • all-reduce计算之后,所有rank的结果均相同,为rank0-rank3的tensor计算sum的结果[1+3 + 5 + 7, 2 + 4 + 6 + 8]=[16, 20]

root@g48r13:/workspace/communication# python all_reduce.py
before reudce  Rank  3  has data  tensor([7, 8])
before reudce  Rank  2  has data  tensor([5, 6])
before reudce  Rank  0  has data  tensor([1, 2])
before reudce  Rank  1  has data  tensor([3, 4])
after reudce  Rank  0  has data  tensor([16, 20])
after reudce  Rank  3  has data  tensor([16, 20])
after reudce  Rank  2  has data  tensor([16, 20])
after reudce  Rank  1  has data  tensor([16, 20])

参考

https://zhuanlan.zhihu.com/p/482557067

https://link.zhihu.com/?target=https%3A//pytorch.org/tutorials/intermediate/dist_tuto.html%23communication-backends

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

计算机视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

2a7659f2ace89c2ee5d340bbdb5bfbfb.png

▲长按加微信群或投稿

6eaa3111a4f4c32f2cf0d7a4484a56d3.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

b5c71e375add0662e2de074848a6def3.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值