汉诺塔问题(非常简单明了的解析)

剑指offer 同时被 2 个专栏收录
42 篇文章 4 订阅
26 篇文章 0 订阅

问题介绍

汉诺塔是一个经典问题,如下图所示,考虑的是如何把A中的方块完全移动到C上,而且在移动的过程中可以借助B,但是要保证,总是小的圆块放到大的圆块上。
在这里插入图片描述
网上关于这类问题已经有很多解析方案了,但是对初学者来说不够简单明了,这里会用图示的方法一步一步带你了解

源代码

#include<iostream>

using namespace std;
void move(int n, char a, char b, char c);
int i = 1;
int main()
{
	int num;
	cout << "输入圆盘的个数:";
	cin >> num;
	move(num, 'A', 'B', 'C');
	system("pause");
	return 0;
}

void move(int n, char a, char b, char c)
{
	if (n == 1)
	{
		cout << "第" << i++ << "步,将第" << n << "个从" << a << "移动到" << c << endl;
	}
	else
	{
		move(n - 1, a, c, b);
		cout << "第" << i++ << "步,将第" << n << "个从" << a << "移动到" << c << endl;
		move(n - 1, b, a, c);
	}
}

源代码采用了递归的方式,虽然简单,但是不够明确,下面以3个圆块为例,使用图解法来分析如何进行递归操作的。
在这里插入图片描述

移动次数

移动n个圆盘,所需要的最小移动次数为 2 n − 1 2^n-1 2n1,自己可以推导下,在这里不再证明。

  • 22
    点赞
  • 6
    评论
  • 56
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值