tensorflow张量理解
- 零阶张量就是一个数,一阶张量是一个向量(类似于一维数组),二阶张量是矩阵(类似于二维数组),三阶张量类似于三维数组,以此类推。张量的阶与矩阵的阶不是一个概念,需要注意。
机器学习的简单理解
- 我们现在处理的数据有文本、语音、图像等,文本数据是一个稀疏矩阵,语音和图片是稠密矩阵。我们拿图像识别为例,我们把图像抽象成三阶张量(高度和宽度和色彩),经过在训练集中机器学习各种方法的处理,得出一个函数f(x)。三阶张量经过函数f(x)即可得到图像识别的结果。这里的函数f(x)一开始有很多未知的参数,只有通过不断的学习,得到并优化f(x)中的参数,让其执行的正确性和速度不断提高,得出效果好的模型,即得到了函数f(x)的具体形式,各个变量都已经确定。我们可以在实际生产过程中应用这个模型,快速得到结果。
人工神经网络(ANN)的简单理解
- 从数学上可以证明,人工神经网络可以表示所有的非线性函数。我们通过神经元的正向传播和反向传播优化参数。分为卷积神经网络(CNN)、深度神经网络(DNN)、递归神经网络、循环神经网络等。