pytorch LSTM从头开始训练一个语言模型代码及其注释

本文详细介绍了如何使用PyTorch中的LSTM和GRU训练一个语言模型,该模型能根据输入词预测下一个词。内容涵盖LSTM的隐藏状态、输出和隐藏层结构,以及双向LSTM的处理方式。核心是利用前一时刻的隐藏状态和嵌入层输出来计算当前时刻的隐藏状态。

利用lstm 和gru 训练一个语言模型 

这个语言模型 就是输入一个词预测下一个词是什么 

  
        **********************************************************************************************************
        emb: torch.Size([32, 32, 650])
        hidden ([2,32,650],[2,32,650])
        这里的Hidden 是包括  hidden  和cell  (hidden,cell)
        
        output torch.Size([32, 32, 650]) 是 [seq_len,batch_Size, embed_size]  
        RNN 的输出 是前面的Hidden  和当前的Input 预测出来的 prey  shape  自认和输入的shape 一样  [seq_len,batch_size,embed_szie]
        抛开批维度 来看 输入就是  [seq_lenth,embed_Size]>>>>output 输出 [seq_len,embed_Size]  
        hidden  则是最后的隐藏状态 维度 [1,hidden_Size] 这里我们一般 hidden_size==embed_size
        因为每次一个序列输出之后  我们都只是拿到最后的隐藏状态    中间状态我们都没有拿  和cell状态 
        
        如果加上批处理维度  在加上2层  [layers,batch_size,hidden_size]  cell 的维度一样  GRu 没有这cell 只有一个状态 
        
        如果是双层的化  hidden 的是 size ==[layers*2,batch_Size,hidden_size] 
        
        一般我们会进行一个双向的合并   hidden[-1]+hidden[-2]  进行相加  
        
        模型的本质就是上一个隐藏状态 [1,1,hidden_Size]+[1,1,embed_size]>>>>output[1,1,embed_Size]
        
        根据 LsTM的推导公式是可以看出 我么计算当前  Hidden的时候 只用到上个Hidden 没有用到cell  cell是根据 ft  it  ct算出来的 
        ************************************************************************************************************
        

"""
https://github.com/pytorch/text

学习语言模型,以及如何训练一个语言模型
学习torchtext的基本使用方法
构建 vocabulary
word to inde 和 index to word
学习torch.nn的一些基本模型
Linear
RNN
LSTM
GRU
RNN的训练技巧
Gradient Clipping
如何保存和读取模型
我们会使用 torchtext 来创建vocabulary, 然后把数据读成batch的格式。请大家自行阅读README来学习torchtext。

"""


import torchtext
from torchtext.vocab import Vectors
import torch
import numpy as np
import random

USE_CUDA=torch.cuda.is_available()
device=torch.device('cuda' if USE_CUDA else 'cpu')

#为了保证实验结果可以复现  我们经常会吧各种random seed 固定在某一个值
random.seed(53113)
np.random.seed(53113)
torch.manual_seed(53113)

if USE_CUDA:
    torch.cuda.manual_seed(53113)
    
BATCH_SIZE=32
EMBEDDING_SIZE=650
MAX_VOCAB_SIZE=50000

"""
我们会继续使用上次的text8作为我们的训练,验证和测试数据
TorchText的一个重要概念是Field,它决定了你的数据会如何被处理。我们使用TEXT这个field来处理文本数据。
我们的TEXT field有lower=True这个参数,所以所有的单词都会被lowercase。
torchtext提供了LanguageModelingDataset这个class来帮助我们处理语言模型数据集。
build_vocab可以根据我们提供的训练数据集来创建最高频单词的单词表,max_size帮助我们限定单词总量。
BPTTIterator可以连续地得到连贯的句子,BPTT的全程是back prop
<think>嗯,用户想用PyTorch构建和训练LSTM网络,我需要一步步解释清楚。首先,根据引用里的资料,LSTMPyTorch里有封装好的模块,比如nn.LSTM,但用户可能也需要了解底层实现。根据引用[2]和[3],数据格式通常是三维的,形状是<N, seq_len, features>,这点很重要,得先说明数据预处理步骤。 接下来是模型构建部分。用户可能需要知道如何用PyTorch的nn.LSTM模块,或者从头搭建。引用[2]提到有人用第三方封装导致问题,所以或许应该推荐使用PyTorch原生的nn.LSTM,同时提到如何自定义参数,比如输入大小、隐藏层大小、层数。另外,引用[3]提到如果想改变各层的神经元数目,需要用LSTMCell,这点可以作为扩展内容。 然后是训练循环,需要包括损失函数、优化器、训练和验证步骤。引用[1]里的项目提到了数据预处理、超参数设置、模型保存等,这些都要涵盖进去。可能还要提到如何保存和加载模型,以及可视化训练过程。 性能评估和可视化部分,引用[1]和[3]都有涉及,比如绘制损失曲线,或者测试集上的指标。此外,应用场景如时间序列预测、文本生成可能需要举例,帮助用户理解实际用途。 用户的问题可能还涉及如何调试模型,比如梯度消失或过拟合,这时候可以建议使用梯度裁剪或Dropout层。另外,超参数调整如学习率、隐藏层大小、序列长度的影响,也是常见问题,需要包含在相关问题里。 要确保步骤清晰,代码示例正确,比如数据格式转换、模型定义、训练循环。同时注意LaTeX格式,变量用$符号包裹,如输入维度$d_{in}$,隐藏层$h$。避免使用第三方库,除非是PyTorch自带的。 最后生成的相关问题要覆盖模型结构、数据预处理、超参数调整、应用场景和常见问题处理,这样用户可以有进一步学习的路径。检查引用是否正确,每个引用标识对应到正确的来源,确保信息准确。</think>根据PyTorch LSTM实现的最佳实践,以下是分步骤的完整实现指南: ### 一、数据预处理关键步骤 1. **序列格式转换**:输入数据需转换为三维张量$(\text{batch\_size},\text{seq\_len},\text{input\_size})$,例如$(32,10,5)$表示32个样本,每个样本10个时间步,每个时间步5个特征[^3] 2. **标准化处理**:使用`sklearn.preprocessing.StandardScaler`对时序数据进行归一化 3. **数据集划分**:按6:2:2比例划分训练集、验证集、测试集 ### 二、LSTM模型构建 ```python import torch import torch.nn as nn class LSTM_Model(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super().__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True # 输入格式为(batch, seq, feature) ) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) out, (hn, cn) = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) # 取最后一个时间步输出 return out ``` 模型参数说明: - $d_{in}$:输入特征维度(input_size) - $h$:隐藏层维度(hidden_size) - $n_{layers}$:堆叠层数(num_layers)[^3] ### 三、训练流程实现 ```python # 初始化参数 model = LSTM_Model(input_size=5, hidden_size=32, num_layers=2, output_size=1) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练循环 for epoch in range(100): for inputs, labels in train_loader: outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # 梯度裁剪 optimizer.step() # 验证集评估 with torch.no_grad(): val_loss = 0 for val_in, val_lab in val_loader: pred = model(val_in) val_loss += criterion(pred, val_lab) print(f"Epoch {epoch+1}, Val Loss: {val_loss.item():.4f}") ``` ### 四、关键技巧说明 1. **梯度裁剪**:防止梯度爆炸,推荐阈值设为0.5-1.0[^1] 2. **学习率调度**:可使用`torch.optim.lr_scheduler.StepLR` 3. **早停机制**:当验证损失连续3个epoch不下降时终止训练 4. **模型保存**: ```python torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), }, 'best_model.pth') ``` ### 五、应用场景示例 1. 时间序列预测(股票价格、气象数据) 2. 自然语言处理(文本生成、情感分析) 3. 设备状态预测(工业设备故障预警) ### 六、性能优化建议 1. **并行化处理**:设置`num_workers=4`加速数据加载 2. **混合精度训练**:使用`torch.cuda.amp.autocast` 3. **层归一化**:在LSTM层后添加`nn.LayerNorm`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值