论文:MixGCF:一种改进的基于图神经网络的推荐系统训练方法(KDD.2021)
文章链接:MixGCF | Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
代码链接:https://github.com/huangtinglin/MixGCF (Pytorch版)
1. 前言
1.1 提出的问题
a. 推荐模型中广泛使用的 CF 存在的一大弊端就是不能很好的学习到隐式负反馈,而正好对基于GNN 的 CF 负采样也没有被探索过。
b. 推荐系统中的负采样方法很重要,负样本是影响推荐效果的因素之一。此前的负样本都是取自真实的数据,而忽略了嵌入信息。
1.2 做出的贡献
a. 引入合成负面样本的想法,而不是直接从数据中抽取负面样本,以改进基于GNN的推荐系统。
b. 提出了一个通用的MixGCF框架,其中包含跳混合和正向混合策略,可以自然地插入基于GNN的推荐模型中。
c. 展示MixGCF给GNN推荐者带来的显著改进,以及它在各种负采样技术上的一致表现。