MixGCF: An Improved Training Method for Graph NeuralNetwork-based Recommender Systems(个人笔记)

MixGCF是一种用于图神经网络推荐系统的改进训练方法,通过正混合和跳跃混合策略合成负样本,提升了模型在识别正负样本边界的能力。文章详细介绍了GNN模型的聚合、池化和负采样优化,并展示了MixGCF在多种负采样技术上的出色性能。
摘要由CSDN通过智能技术生成

论文:MixGCF:一种改进的基于图神经网络的推荐系统训练方法(KDD.2021)

文章链接:MixGCF | Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining

代码链接:https://github.com/huangtinglin/MixGCF (Pytorch版)


1. 前言

1.1 提出的问题

a. 推荐模型中广泛使用的 CF 存在的一大弊端就是不能很好的学习到隐式负反馈,而正好对基于GNN 的 CF 负采样也没有被探索过。

b. 推荐系统中的负采样方法很重要,负样本是影响推荐效果的因素之一。此前的负样本都是取自真实的数据,而忽略了嵌入信息。

1.2 做出的贡献

a. 引入合成负面样本的想法,而不是直接从数据中抽取负面样本,以改进基于GNN的推荐系统。

b. 提出了一个通用的MixGCF框架,其中包含跳混合和正向混合策略,可以自然地插入基于GNN的推荐模型中。

c. 展示MixGCF给GNN推荐者带来的显著改进,以及它在各种负采样技术上的一致表现。

1

cst-yolo是一种基于改进版yolov7的新颖的血细胞检测方法。YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,它将目标检测问题转化为单次前向传递过程,能够更快速地检测目标。 cst-yolo在yolov7的基础上进行了改进,主要体现在以下几点。首先,对于血细胞的特征提取,cst-yolo采用了一种新的卷积神经网络结构。这种网络结构利用了深层次的特征融合和特征重用,能够更准确地提取血细胞的特征信息。 其次,cst-yolo在目标检测过程中引入了注意力机制。该机制可以帮助网络更加关注血细胞相关的区域,在目标检测时提高准确率和召回率。 另外,cst-yolo还采用了一种新的损失函数,用于引导网络的训练过程。这个损失函数结合了目标检测任务的特点,能够更好地指导网络学习血细胞的检测。 最后,为了提高cst-yolo的检测性能,研究者还进行了大量的实验和优化工作。他们在多个公开的血细胞数据集上进行了测试,结果显示,cst-yolo相比于传统方法,在准确率和召回率上都有了显著提升。 综上所述,cst-yolo是一种基于改进版yolov7的血细胞检测方法。通过引入新的网络结构、注意力机制和损失函数的优化,以及大量的实验和优化工作,cst-yolo在血细胞检测任务中取得了较好的性能表现。这种方法有望为血液相关疾病的早期诊断和治疗提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值