跨摄像头行人跟踪:在安防领域里,跨摄像头行人跟踪技术可以作为人脸识别技术的重要补充,对无法获取清晰拍摄人脸的行人进行跨摄像头连续跟踪,增强数据的时空连续性。此技术可以用于嫌疑犯追踪、失踪人口追查等。本算法的开发使用包含室外与室内场景,采用6个有顺序的摄像头对行人进行拍摄,前后两个摄像头的视野有部分重叠。本算法可以实现对行人的连续跟踪,应用于智慧安防与智慧零售领域。
算法报警的业务逻辑:对行人进行跟踪,一组6段视频播放结束后,输出最后跟踪成功的行人与ID。通过ID的查找确认被跟踪的人是否连续并正确。
环境要求:包括白天、晚上以及各种天气条件等,需要保证光照,尤其室内要注意背光的问题。
任务:检测;识别;跟踪。
数据特点:检测目标远近大小不同、检测目标多样、检测目标角度不同、检测目标遮挡、聚集等。
评价指标:
在测试日志最后会打印出每个摄像头里的MOTA(Multiple Object Tracking Accuracy)和IDF1,最后取MOTA和IDF1的平均值作为精度分。其中,MOTA表示多目标跟踪准确度,IDF1是指每个行人框中行人ID识别的F值。
算法流程及实现
在backbone的选择中,最终决定使用YO