这里提出了一种基于U-Net的无监督域自适应框架,该框架的理论保证基于Margin Disparity Discrepancy(MDD)的Margins。本工作通过证明在保留U-Net标准形式的同时,改进了其性能,从而为从方法论和实践角度研究具有非常大型假设空间的模型提供了新途径。
当前图像分割的最先进技术通常基于U-Net结构,这是一种U形编码器-解码器网络,具有跳接连接。尽管性能强大,但这种架构在用于具有与训练数据不同特性的数据时,通常表现不佳。
为了解决在存在域转移的情况下提高性能的问题,已经开发了许多技术,但通常与域自适应理论的联系并不紧密。在本文中,作者提出了一种基于U-Net的无监督域自适应框架,该框架的理论保证基于Margin Disparity Discrepancy(MDD)的Margins。作者在海马体分割任务上评估所提出的技术,结果发现Margins-UNet能够学习到具有域不变性的特征,而无需了解目标域中的标签。
在12个数据集组合中的11个上,Margins-UNet在标准U-Net上的性能得到提高。本工作通过证明在保留U-Net标准形式的同时,改进了其性能,从而为从方法论和实践角度研究具有非常大型假设空间的模型提供了新途径。
代码:https://github.com/asbjrmunk/mdd-unet
1 Introduction
在医学图像分析数据中,设备、患者组和扫描协议等因素导致了分布的巨大变化。由于标记医学图像通常需要专业行人的大量参与,因此可用的标记数据通常有限。这是医学图像分割中的一个关键挑战,因为模型通常无法泛化到与训练数据的具体设置不同的数据,而手动标记每个新测试域的数据是不切实际的。
解决这个问题的一个方法是自监督域自适应(UDA)。在UDA中,目标是将源域学习到的知识转移到一个类似但不同的目标域,只假设源域的标签。
实用的域自适应方法试图利用这种权衡,例如DANN[6]采用了一种受GAN[9]启发的对抗性架构,其中网络在寻求学习输入表示时,源域和目标域无法区分,同时在本领域表现良好。然而,DANN的理论基础仅限于二分类器,这意味着对于分割等问题,该