U-Net最新变体 性能连超UNet++/UNet v2,计算量降低160倍

医学图像分割是医学影像分析中的一项关键技术,它能将医学图像中的组织、病变或解剖结构准确地分离和标记出来,为医生提供关键的定量和定性信息,在临床量化、疾病诊断、治疗计划等实际应用中起到了至关重要的作用。

U-Net是医学图像分割中的最重要的架构之一,以其独特的对称U形结构而闻名,当前图像分割的最先进技术通常也都是基于U-Net结构。但随着技术的进步和新模型的出现,UNet正面临着一些挑战,比如数据集的限制、语义差距、计算资源消耗过高等。

为克服这些挑战,提高模型的性能和应用范围,研究者们提出了许多U-Net的改进方案。今年最新的VM-UNet就是代表,性能连超UNet++/UNet v2等SOTA。

除此之外,结合全新双极路由注意力的BRAU-Net++、Mamba加持的Mamba-UNet、参数和计算量降低494和160倍的EGE-UNet等也让UNet算法焕发第二春。为帮助同学们深入了解原理,获取创新点,我整理了10个最新的U-Net改进方案,来源文章以及开源代码也列上了,方便同学们复现。

论文和代码需要的同学看文末

VM-UNet

Vision Mamba UNet for Medical Image Segmentation

方法:本文首次介绍了一种纯SSM(Selective Sequential Modeling)模型用于医学图像分割的方法,并提出了基于VSS(

<think>好的,我需要帮用户查找关于SwinUNETR V2的资料,包括模型介绍、使用教程和实现代码。首先,用户提到的SwinUNETR V2可能和Swin Transformer V2有关联,因为名字相似。根据提供的引用,引用[1]提到了Swin-Transformer-V2的项目地址,这可能是一个基础模型,而SwinUNETR V2可能是基于它的变体,特别是用于医学图像分割的UNETR架构结合Swin Transformer。 接下来,我需要确认用户提供的引用中有没有直接提到SwinUNETR V2。引用[1]是关于Swin Transformer V2的使用与安装教程,引用[2]涉及Swin-Transformer的模块搭建,引用[3]是SwinUnet的复现源码。虽然用户问的是SwinUNETR V2,但可能这些资料有参考价值,尤其是UNETR结构通常用于3D医学图像,而SwinUnet则是2D的。需要指出可能的区别,并建议用户参考相关项目。 然后,分析SwinUNETR可能的组成:结合Swin Transformer V2作为骨干网络,加上UNETR的架构。UNETR使用Transformer作为编码器,配合CNN解码器进行分割任务。因此,模型介绍部分需要解释这两部分的结合,以及改进,比如窗口注意力机制、更大的模型容量等。 关于使用教程,引用[1]的Swin Transformer V2安装教程可能适用,但需要针对UNETR的调整。实现代码方面,用户提供的引用中没有直接链接,但可以建议参考官方仓库或相关论文的复现,比如引用[3]的SwinUnet源码,虽然它是2D的,但结构可能有相似之处。 最后,需要生成相关问题,引导用户进一步探索,比如性能优化、多模态应用等。同时,确保回答中引用正确,比如引用[1][2][3]的来源。</think>### SwinUNETR V2 模型介绍与使用指南 #### 1. 模型背景 SwinUNETR V2是基于**Swin Transformer V2**与**UNETR(UNet Transformer)**的混合架构,专为医学图像分割任务设计。其核心改进包括: - 采用**窗口注意力机制**(Shifted Window Multi-head Self Attention, SW-MSA)提升计算效率[^1] - 引入**分层特征提取**结构,支持多尺度特征融合 -UNETR框架下优化3D医学图像处理能力 数学表达式描述特征映射过程: $$ \text{FeatureMap}_{l+1} = \text{SW-MSA}(\text{LayerNorm}(\text{FeatureMap}_l)) $$ #### 2. 实现要 (参考Swin Transformer实现逻辑[^2]) ```python # 示例代码结构(需安装monai库) from monai.networks.nets import SwinUNETR model = SwinUNETR( img_size=(96, 96, 96), in_channels=1, out_channels=14, depths=(2, 2, 2, 2), num_heads=(3, 6, 12, 24), feature_size=48 ) ``` #### 3. 使用流程 1. 环境配置: ```bash # 安装基础依赖 pip install monai==0.9.1 torch==1.12.0+cu113 torchvision==0.13.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 ``` 2. 数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值