医学图像分割是医学影像分析中的一项关键技术,它能将医学图像中的组织、病变或解剖结构准确地分离和标记出来,为医生提供关键的定量和定性信息,在临床量化、疾病诊断、治疗计划等实际应用中起到了至关重要的作用。
U-Net是医学图像分割中的最重要的架构之一,以其独特的对称U形结构而闻名,当前图像分割的最先进技术通常也都是基于U-Net结构。但随着技术的进步和新模型的出现,UNet正面临着一些挑战,比如数据集的限制、语义差距、计算资源消耗过高等。
为克服这些挑战,提高模型的性能和应用范围,研究者们提出了许多U-Net的改进方案。今年最新的VM-UNet就是代表,性能连超UNet++/UNet v2等SOTA。
除此之外,结合全新双极路由注意力的BRAU-Net++、Mamba加持的Mamba-UNet、参数和计算量降低494和160倍的EGE-UNet等也让UNet算法焕发第二春。为帮助同学们深入了解原理,获取创新点,我整理了10个最新的U-Net改进方案,来源文章以及开源代码也列上了,方便同学们复现。
论文和代码需要的同学看文末
VM-UNet
Vision Mamba UNet for Medical Image Segmentation
方法:本文首次介绍了一种纯SSM(Selective Sequential Modeling)模型用于医学图像分割的方法,并提出了基于VSS(