随着 AI 技术的迅猛发展,越来越多的边缘计算设备可以处理从轻量级任务到复杂的 AI 模型。在本文中,我们将对比几款主流的边缘 AI 设备,包括 NVIDIA Jetson 系列、香橙派 和 树莓派 5,并探讨 Hailo 加速器 在边缘 AI 领域的潜力。我们将重点分析各设备的算力、功耗、内存以及支持的 AI 模型类型,帮助开发者选择最合适的边缘 AI 解决方案。
结论和推荐在文末 👉🏻
NVIDIA Jetson 系列:全面支持多种 AI 模型
边缘 AI 计算方案对比:从 NVIDIA Jetson 到 Hailo 加速器
随着人工智能(AI)技术的迅猛发展,越来越多的边缘计算设备可以处理从轻量级任务到复杂的 AI 模型。在这篇文章中,我们将对比几款主流的边缘 AI 设备,包括 NVIDIA Jetson 系列、香橙派 和 树莓派 5,并探讨 Hailo 加速器 在边缘 AI 领域的潜力。我们将重点分析各设备的算力、功耗、内存以及支持的 AI 模型类型,帮助开发者选择最适合的边缘 AI 解决方案。
NVIDIA Jetson 系列:全面支持多种 AI 模型
NVIDIA Jetson 系列是当前边缘计算市场上功能最强大的 AI 计算方案之一。得益于 NVIDIA 的强大 GPU 及优化的生态系统,Jetson 系列支持从深度学习、计算机视觉到某些复杂的 AI 模型。通过 Jetson Containers,开发者可以在设备上轻松运行包括 TensorFlow、PyTorch、ONNX 等主流框架的 AI 模型。
设备名称 | 算力(TOPS) | GPU 架构 | 内存 | CPU | 功耗范围 | 支持模型类型 | 优势 |
---|---|---|---|---|---|---|---|
Jetson Nano | 0.5 TOPS | Maxwell (128 核心) | 4GB | 4 核心 ARM Cortex-A57 | 5W-10W | 轻量级模型,视觉推理 | 适合小型项目,轻量推理任务 |
Jetson Xavier NX | 21 TOPS | Volta (384 核心) | 8GB | 6 核心 ARM v8.2 64 位 CPU | 10W-15W | 计算机视觉,深度学习 | 功耗和性能平衡,适合复杂模型 |
Jetson Orin Nano | 40 TOPS | Ampere (512 核心) | 4GB/8GB | 6 核心 ARM Cortex-A78AE | 7W-15W | 深度学习,语音识别 | 中等功耗,适合中型任务 |
Jetson Orin NX | 70-100 TOPS | Ampere (1024 核心) | 8GB/16GB | 6 核心 ARM Cortex-A78AE | 10W-25W | 大型深度学习,复杂模型 | 强大算力,支持大型推理任务 |