某公司开发了一种新产品,打算与目前市场上已有的三种同类产品竞争。 为了了解这种新产品在市场上的竞争力,在大规模投放市场 前,公司营销部门进行了广 泛的市场调查,得到了表8。四种产品分别记为 A 、B 、C、D ,其中 A为新产品,表 中的数据的含义是:近购买某种产品(用行表示)的顾客下次购买四种产品的机会(概 率)。例如:表中第一行数据表示当前购买产品 A的顾客,下次购买产品 A 、B 、C、D 的概率分别为75%,10%,5%,10%。请你根据这个调查结果,分析新产品 A未来 的市场份额大概是多少?
(1)问题分析
新产品进入市场后,初期的市场份额将会不断发生变化,因此,本例中的问题是一 个离散动态随机过程,也就是马氏链(Markov chain)。很显然,上面给出的表实 际上是转移概率矩阵(注意每行元素的和肯定为1)。要分析新产品 A未来的市场份额, 就是要计算稳定状态下每种产品的概率。
(2)模型的建立
记 N 为产品种数。产品编号为i( N i =1, 2,...1 L= ),转移概率矩阵的元素记为,稳定状态下产品i的市场份额记为
. 因为是稳定状态,所以应该有
(1)
不过,这N 个方程实际上并不独立,至少有一个是冗余的。好在我们还有另一个 约束,即 N 种产品的市场份额之和等于1
(2)
可见,这个问题的模型实际上是一个非常简单的方程组(当然,还应该增加概率 非负的约束)。如果把这些看成约束条件,那就是一个特殊的优化模型(没有目标函数)。
(3)模型的求解
LINGO程序如下:
MODEL:
TITLE 新产品的市场预测;
SETS:
PROD/ A B C D/: P;
LINK(PROD, PROD): T;
ENDSETS
DATA: ! 转移概率矩阵;
T = .75 .1 .05 .1
.4 .2 .1 .3
.1 .2 .4 .3
.2 .2 .3 .3;
ENDDATA
@FOR(PROD(I): P(I)=@SUM(LINK(J,I): P(J)* T(J,I)) );
@SUM(PROD: P) = 1;
@FOR(PROD(I): @WARN( '输入矩阵的每行之和必须是1', @ABS( 1 - @SUM(LINK(I,J): T(I,J)))#GT# .000001));
END
可以指出的是,上面LINGO模型中后的语句@WARN只是为了验证输入矩阵的每行 之和必须是1,而且我们看到为了比较两个实数(如X和1)是否相等,一般不能直接用 “X#NE#1”,因为受计算机字长(精度)的限制,实数在计算机内存存储是有误差的。所 以,通常的方法是比较这两个实数之差的绝对值是否足够小。 求解结果为 A ,B ,C, D的市场份额分别是47.5%,15.25%,16.75%,20.5%。
习题:假设某公司在银行有一个现金帐户和一个长期投资帐户,现金帐户利息很低, 而长期投资帐户利息较高。所有业务往来(收入和支出)只能通过现金帐户进行,如果 现金帐户中钱很多,就可能需要将一部分钱转入长期投资帐户;反之,需要将一部分钱从长期投资帐户转入现金帐户。为简单起见,假设以万元为单位,现金帐户的钱数只能 是-20,-10,0,…,40,50(万元)之一,分别记为状态1,2,…,7,8,它们 每个月分别导致的费用如表12所示。此外,根据统计,如果当月现金帐户的状态位于i ( 2 ≤i ≤7 ),下个月现金帐户的状态只可能位于 i-1,i,i+1 三者之一,并且概率分别为0.4,0.1,0.5;如果当月现金帐户的状态位于1,则下个月现金帐户的状态只可 能位于1和2,并且概率分别为0.5,0.5;如果当月现金帐户的状态位于8,则下个月 现金帐户的状态只可能位于7和8,并且概率分别为0.4,0.6。
每月初你可以改变当前状态(即从长期投资帐户转入现金帐户,或从现金帐户转入 长期投资帐户),但假设每次状态的改变银行收取0.3万元的固定费用,此外还要收取 转帐金额5%的转帐手续费。请你建立优化模型,确定如果当月现金帐户的状态位于i, 是否应该改变当前状态,如何改变状态?