结合泛函极值_泛函极值及变分法教程.doc

本文详细介绍了泛函极值的概念,通过变分法探讨了如何找到使泛函达到最大值或最小值的函数。举例说明了两点间曲线长度的泛函表达以及最速降线问题,阐述了泛函的变分定义,包括两种定义方式,并展示了变分的运算规律,为求解泛函极值问题奠定了基础。
摘要由CSDN通过智能技术生成

PAGE

PAGE 53

第二章 泛函极值及变分法(补充内容)2.1 变分的基本概念2.1.1 泛函和变分泛函是一种广义的函数,是指对于某一类函数{y(x)}中的每一个函数y(x),变量J有一值与之对应,或者说数J对应于函数y(x)的关系成立,则我们称变量J是函数y(x)的泛函,记为J[y(x)]。例1:如果表示两固定端点A(xA,yA),B(xB,yB)间的曲线长度J(图2.1.1),则由微积分相关知识容易得到: (2.1.1)显然,对于不同的曲线y(x),对应于不同的长度J,即J是函数y(x)的函数,J=J[y(x)]。

图2.1.1 两点间任一曲线的长度例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。设在不同铅垂线上的两点P1与P2连接成某一曲线,质点P在重力作用下沿曲线由点P1自由滑落到点P2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。

图2.1.2 最速降线问题选取一个表示曲线的函数y(x),设质点从P1到P2沿曲线y=y(x)运动,则其运动速度为:

其中,S表示曲线的弧长,t表示时间,于是:

设重力加速度为g,则。因为P1和P2点的横坐标分别为x1到x2,那么质点从P1到P2所用时间便为:

(2.1.2)则最速降线问题对应于泛函J[y(x)]取最小值。回顾函数的微分:对于函数的微分有两种定义:一种是通常的定义,即函数的增量: (2.1.3)其中A(x)与x无关,且有x→0时ρ(x,x)→0,于是就称函数y(

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值