【超详细证明】皮尔逊(Pearson)统计量服从卡方分布(卡方检验)


作者:小猪快跑

基础数学&计算数学,从事优化领域7年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法

如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑

相关教程

预备知识

χ 2 \chi^{2} χ2分布的定义

X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 独立, X i ∼ N ( a i , 1 ) , i = 1 , ⋯ n X_i\sim N(a_i,1),i=1,\cdots n XiN(ai,1),i=1,n,则 X = ∑ i = 1 n X i X=\sum_{i=1}^n X_i X=i=1nXi 的分布称为具自由度 n n n 非中心参数 δ = ( ∑ i = 1 n a i 2 ) 1 / 2 \delta=\left(\sum_{i=1}^na_i^2\right)^{1/2} δ=(i=1nai2)1/2

χ 2 \chi^2 χ2 分布,记为 X ∼ x n , δ 2 X \sim x_{n,\delta}^2 Xxn,δ2。当 δ = 0 \delta=0 δ=0 时,分布称为中心的,且记为 X ∼ x n 2 X\sim x_n^2 Xxn2

χ 2 \chi^{2} χ2分布的常用性质

X = ( X 1 , ⋯   , X n ) ′ , X 1 , . . . , X n \boldsymbol X=(X_{1},\cdots,X_n)',X_{1},...,X_{n} X=(X1,,Xn),X1,...,Xn 独立,
X i ∼ N ( a i , 1 ) ,   i = 1 , ⋯   , n X_{i}{\sim }N( a_{i}, 1),\ i{= }1, \cdots, n XiN(ai,1), i=1,,n
a = ( a 1 , ⋯   , a n ) ′ \boldsymbol a= ( a_1, \cdots , a_n) ' a=(a1,,an) Y = X ′ A X \boldsymbol Y= \boldsymbol X'\boldsymbol A\boldsymbol X Y=XAX A \boldsymbol A A n n n 阶对称方阵。则 Y \boldsymbol Y Y 服从 χ 2 \chi^2 χ2 分布的充要条件为 A \boldsymbol A A 为幂等方阵,即 A 2 = A \boldsymbol A^2 = \boldsymbol A A2=A。这时 Y ∼ χ r , δ 2 \boldsymbol Y \sim \chi_{r,\delta}^2 Yχr,δ2,其中 r = r k ( A ) r=\mathrm{rk}(\boldsymbol A) r=rk(A) A \boldsymbol A A 之秩,而 δ 2 = a ′ A a \delta^2=\boldsymbol a'\boldsymbol A\boldsymbol a δ2=aAa

证明:

  1. 充分性:

    • A \boldsymbol A A 为幂等,则因其特征根只能为 0 和 1,且 1 的个数为 r = r k ( A ) r=\mathrm{rk}(\boldsymbol A) r=rk(A),故存在正交阵 P \boldsymbol P P,致

    P A P ′ = ( I r 0 0 0 ) \boldsymbol{PAP'}=\begin{pmatrix}\boldsymbol{I_r}&\boldsymbol 0\\\boldsymbol{0}&\boldsymbol{0}\end{pmatrix} PAP=(Ir000)

    • 作正交变换 Z = ( Z 1 , ⋯   , Z n ) ′ = P X \boldsymbol Z=(Z_{1},\cdots,Z_{n})'=\boldsymbol P \boldsymbol X Z=(Z1,,Zn)=PX,知 Z ∼ N ( P ′ a , I n ) \boldsymbol Z{\sim}N(\boldsymbol P' \boldsymbol a,\boldsymbol I_n) ZN(Pa,In)。但

    Y = X ′ A X = Z ′ P A P ′ Z = ∑ i = 1 r Z i 2 \boldsymbol Y = \boldsymbol X'\boldsymbol A\boldsymbol X = \boldsymbol Z'\boldsymbol P\boldsymbol A\boldsymbol P'\boldsymbol Z=\sum_{i=1}^rZ_i^2 Y=XAX=ZPAPZ=i=1rZi2

    • 由此知 Y ∼ χ r , δ 2 \boldsymbol Y\sim\chi_{r,\delta}^{2} Yχr,δ2,其中

    δ 2 = ∑ i = 1 r ( E Z i ) 2 = ( E Z ) ′ ( I r 0 0 0 ) ( E Z ) = ( E Z ) ′ P A P ′ ( E Z ) = ( E ( P ′ Z ) ) ′ A ( E ( P ′ Z ) ) = ( E X ) ′ A ( E X ) = a ′ A a \begin{aligned} \delta^{2} &= \sum_{i=1}^{r}(EZ_{i})^{2} \\ &=(E \boldsymbol Z)'\begin{pmatrix}\boldsymbol{I_r}&\boldsymbol 0\\\boldsymbol{0}&\boldsymbol{0}\end{pmatrix}(E \boldsymbol Z) \\ &=(E \boldsymbol Z)'\boldsymbol P\boldsymbol A\boldsymbol P'(E \boldsymbol Z) \\ &=(E(\boldsymbol P'\boldsymbol Z))'\boldsymbol A(E(\boldsymbol P'\boldsymbol Z)) \\ &=(E\boldsymbol X)'\boldsymbol A(E\boldsymbol X)=\boldsymbol a'\boldsymbol A\boldsymbol a \end{aligned} δ2=i=1r(EZi)2=(EZ)(Ir000)(EZ)=(EZ)PAP(EZ)=(E(PZ))A(E(PZ))=(EX)A(EX)=aAa

  2. 必要性:

    • 我们先证明若 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^{2}) XN(μ,σ2) λ X 2 \lambda X^{2} λX2的特征函数是 φ Y ( t ) = ( 1 − 2 i t λ σ 2 ) − 1 2 e i μ 2 t λ 1 − 2 i t λ σ 2 \varphi_Y(t)=(1 - 2it\lambda\sigma^{2})^{-\frac{1}{2}}e^{\frac{i\mu^{2}t\lambda}{1 - 2it\lambda\sigma^{2}}} φY(t)=(12itλσ2)21e12itλσ2iμ2tλ

      • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^{2}) XN(μ,σ2),令 Y = λ X 2 Y = \lambda X^{2} Y=λX2,其特征函数 φ Y ( t ) = E ( e i t Y ) = E ( e i t λ X 2 ) \varphi_Y(t)=E(e^{itY}) = E(e^{it\lambda X^{2}}) φY(t)=E(eitY)=E(eitλX2)。根据期望的定义, φ Y ( t ) = ∫ − ∞ + ∞ e i t λ x 2 f ( x ) d x \varphi_Y(t)=\int_{-\infty}^{+\infty}e^{it\lambda x^{2}}f(x)dx φY(t)=+eitλx2f(x)dx,其中 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^{2}}{2\sigma^{2}}} f(x)=2π σ1e2σ2(xμ)2 X X X的概率密度函数。
      • 先对指数部分进行化简: i t λ x 2 − ( x − μ ) 2 2 σ 2 = i t λ x 2 − x 2 − 2 μ x + μ 2 2 σ 2 = ( i t λ − 1 2 σ 2 ) x 2 + μ x σ 2 − μ 2 2 σ 2 it\lambda x^{2}-\frac{(x - \mu)^{2}}{2\sigma^{2}}=it\lambda x^{2}-\frac{x^{2}-2\mu x+\mu^{2}}{2\sigma^{2}}=(it\lambda-\frac{1}{2\sigma^{2}})x^{2}+\frac{\mu x}{\sigma^{2}}-\frac{\mu^{2}}{2\sigma^{2}} itλx22σ2(xμ)2=itλx22σ2x22μx+μ2=(itλ2σ21)x2+σ2μx2σ2μ2
      • a = i t λ − 1 2 σ 2 a = it\lambda-\frac{1}{2\sigma^{2}} a=itλ2σ21 b = μ σ 2 b=\frac{\mu}{\sigma^{2}} b=σ2μ c = − μ 2 2 σ 2 c = -\frac{\mu^{2}}{2\sigma^{2}} c=2σ2μ2,则积分变为 1 2 π σ ∫ − ∞ + ∞ e a x 2 + b x + c d x \frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{+\infty}e^{ax^{2}+bx + c}dx 2π σ1+eax2+bx+cdx
      • 对于积分 ∫ − ∞ + ∞ e a x 2 + b x + c d x \int_{-\infty}^{+\infty}e^{ax^{2}+bx + c}dx +eax2+bx+cdx,利用配方法将 a x 2 + b x + c ax^{2}+bx + c ax2+bx+c 变形为 a ( x + b 2 a ) 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值