文章目录
作者:小猪快跑
基础数学&计算数学,从事优化领域7年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法
如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑
相关教程
- 常用分布的数学期望、方差、特征函数
- 【推导过程】常用离散分布的数学期望、方差、特征函数
- 【推导过程】常用连续分布的数学期望、方差、特征函数
- Z分位数速查表
- 【概率统计通俗版】极大似然估计
- 【附代码&原理】正态分布检验
- 【附代码&原理】偏正态分布的数据处理方法
- 【超详图文】多少样本量用 t分布 OR 正态分布
- 【推导过程】常用共轭先验分布
- 【代码&原理】皮尔逊(Pearson)、斯皮尔曼(Spearman)和肯德尔(Kendall)相关性系数
- 【机器学习】【通俗版】EM算法(待更新)
预备知识
χ 2 \chi^{2} χ2分布的定义
设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn 独立, X i ∼ N ( a i , 1 ) , i = 1 , ⋯ n X_i\sim N(a_i,1),i=1,\cdots n Xi∼N(ai,1),i=1,⋯n,则 X = ∑ i = 1 n X i X=\sum_{i=1}^n X_i X=∑i=1nXi 的分布称为具自由度 n n n 非中心参数 δ = ( ∑ i = 1 n a i 2 ) 1 / 2 \delta=\left(\sum_{i=1}^na_i^2\right)^{1/2} δ=(∑i=1nai2)1/2
的 χ 2 \chi^2 χ2 分布,记为 X ∼ x n , δ 2 X \sim x_{n,\delta}^2 X∼xn,δ2。当 δ = 0 \delta=0 δ=0 时,分布称为中心的,且记为 X ∼ x n 2 X\sim x_n^2 X∼xn2。
χ 2 \chi^{2} χ2分布的常用性质
设 X = ( X 1 , ⋯ , X n ) ′ , X 1 , . . . , X n \boldsymbol X=(X_{1},\cdots,X_n)',X_{1},...,X_{n} X=(X1,⋯,Xn)′,X1,...,Xn 独立,
X i ∼ N ( a i , 1 ) , i = 1 , ⋯ , n X_{i}{\sim }N( a_{i}, 1),\ i{= }1, \cdots, n Xi∼N(ai,1), i=1,⋯,n
记 a = ( a 1 , ⋯ , a n ) ′ \boldsymbol a= ( a_1, \cdots , a_n) ' a=(a1,⋯,an)′, Y = X ′ A X \boldsymbol Y= \boldsymbol X'\boldsymbol A\boldsymbol X Y=X′AX, A \boldsymbol A A 为 n n n 阶对称方阵。则 Y \boldsymbol Y Y 服从 χ 2 \chi^2 χ2 分布的充要条件为 A \boldsymbol A A 为幂等方阵,即 A 2 = A \boldsymbol A^2 = \boldsymbol A A2=A。这时 Y ∼ χ r , δ 2 \boldsymbol Y \sim \chi_{r,\delta}^2 Y∼χr,δ2,其中 r = r k ( A ) r=\mathrm{rk}(\boldsymbol A) r=rk(A) 为 A \boldsymbol A A 之秩,而 δ 2 = a ′ A a \delta^2=\boldsymbol a'\boldsymbol A\boldsymbol a δ2=a′Aa。
证明:
-
充分性:
- 若 A \boldsymbol A A 为幂等,则因其特征根只能为 0 和 1,且 1 的个数为 r = r k ( A ) r=\mathrm{rk}(\boldsymbol A) r=rk(A),故存在正交阵 P \boldsymbol P P,致
P A P ′ = ( I r 0 0 0 ) \boldsymbol{PAP'}=\begin{pmatrix}\boldsymbol{I_r}&\boldsymbol 0\\\boldsymbol{0}&\boldsymbol{0}\end{pmatrix} PAP′=(Ir000)
- 作正交变换 Z = ( Z 1 , ⋯ , Z n ) ′ = P X \boldsymbol Z=(Z_{1},\cdots,Z_{n})'=\boldsymbol P \boldsymbol X Z=(Z1,⋯,Zn)′=PX,知 Z ∼ N ( P ′ a , I n ) \boldsymbol Z{\sim}N(\boldsymbol P' \boldsymbol a,\boldsymbol I_n) Z∼N(P′a,In)。但
Y = X ′ A X = Z ′ P A P ′ Z = ∑ i = 1 r Z i 2 \boldsymbol Y = \boldsymbol X'\boldsymbol A\boldsymbol X = \boldsymbol Z'\boldsymbol P\boldsymbol A\boldsymbol P'\boldsymbol Z=\sum_{i=1}^rZ_i^2 Y=X′AX=Z′PAP′Z=i=1∑rZi2
- 由此知 Y ∼ χ r , δ 2 \boldsymbol Y\sim\chi_{r,\delta}^{2} Y∼χr,δ2,其中
δ 2 = ∑ i = 1 r ( E Z i ) 2 = ( E Z ) ′ ( I r 0 0 0 ) ( E Z ) = ( E Z ) ′ P A P ′ ( E Z ) = ( E ( P ′ Z ) ) ′ A ( E ( P ′ Z ) ) = ( E X ) ′ A ( E X ) = a ′ A a \begin{aligned} \delta^{2} &= \sum_{i=1}^{r}(EZ_{i})^{2} \\ &=(E \boldsymbol Z)'\begin{pmatrix}\boldsymbol{I_r}&\boldsymbol 0\\\boldsymbol{0}&\boldsymbol{0}\end{pmatrix}(E \boldsymbol Z) \\ &=(E \boldsymbol Z)'\boldsymbol P\boldsymbol A\boldsymbol P'(E \boldsymbol Z) \\ &=(E(\boldsymbol P'\boldsymbol Z))'\boldsymbol A(E(\boldsymbol P'\boldsymbol Z)) \\ &=(E\boldsymbol X)'\boldsymbol A(E\boldsymbol X)=\boldsymbol a'\boldsymbol A\boldsymbol a \end{aligned} δ2=i=1∑r(EZi)2=(EZ)′(Ir000)(EZ)=(EZ)′PAP′(EZ)=(E(P′Z))′A(E(P′Z))=(EX)′A(EX)=a′Aa
-
必要性:
-
我们先证明若 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^{2}) X∼N(μ,σ2), λ X 2 \lambda X^{2} λX2的特征函数是 φ Y ( t ) = ( 1 − 2 i t λ σ 2 ) − 1 2 e i μ 2 t λ 1 − 2 i t λ σ 2 \varphi_Y(t)=(1 - 2it\lambda\sigma^{2})^{-\frac{1}{2}}e^{\frac{i\mu^{2}t\lambda}{1 - 2it\lambda\sigma^{2}}} φY(t)=(1−2itλσ2)−21e1−2itλσ2iμ2tλ
- 设 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^{2}) X∼N(μ,σ2),令 Y = λ X 2 Y = \lambda X^{2} Y=λX2,其特征函数 φ Y ( t ) = E ( e i t Y ) = E ( e i t λ X 2 ) \varphi_Y(t)=E(e^{itY}) = E(e^{it\lambda X^{2}}) φY(t)=E(eitY)=E(eitλX2)。根据期望的定义, φ Y ( t ) = ∫ − ∞ + ∞ e i t λ x 2 f ( x ) d x \varphi_Y(t)=\int_{-\infty}^{+\infty}e^{it\lambda x^{2}}f(x)dx φY(t)=∫−∞+∞eitλx2f(x)dx,其中 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x - \mu)^{2}}{2\sigma^{2}}} f(x)=2πσ1e−2σ2(x−μ)2是 X X X的概率密度函数。
- 先对指数部分进行化简: i t λ x 2 − ( x − μ ) 2 2 σ 2 = i t λ x 2 − x 2 − 2 μ x + μ 2 2 σ 2 = ( i t λ − 1 2 σ 2 ) x 2 + μ x σ 2 − μ 2 2 σ 2 it\lambda x^{2}-\frac{(x - \mu)^{2}}{2\sigma^{2}}=it\lambda x^{2}-\frac{x^{2}-2\mu x+\mu^{2}}{2\sigma^{2}}=(it\lambda-\frac{1}{2\sigma^{2}})x^{2}+\frac{\mu x}{\sigma^{2}}-\frac{\mu^{2}}{2\sigma^{2}} itλx2−2σ2(x−μ)2=itλx2−2σ2x2−2μx+μ2=(itλ−2σ21)x2+σ2μx−2σ2μ2。
- 令 a = i t λ − 1 2 σ 2 a = it\lambda-\frac{1}{2\sigma^{2}} a=itλ−2σ21, b = μ σ 2 b=\frac{\mu}{\sigma^{2}} b=σ2μ, c = − μ 2 2 σ 2 c = -\frac{\mu^{2}}{2\sigma^{2}} c=−2σ2μ2,则积分变为 1 2 π σ ∫ − ∞ + ∞ e a x 2 + b x + c d x \frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{+\infty}e^{ax^{2}+bx + c}dx 2πσ1∫−∞+∞eax2+bx+cdx。
- 对于积分 ∫ − ∞ + ∞ e a x 2 + b x + c d x \int_{-\infty}^{+\infty}e^{ax^{2}+bx + c}dx ∫−∞+∞eax2+bx+cdx,利用配方法将 a x 2 + b x + c ax^{2}+bx + c ax2+bx+c 变形为 a ( x + b 2 a ) 2
-