nltk.stem 词干提取(stemming)

本文介绍了三种常见的词干提取技术:Porter、Lancaster和Snowball算法,这些技术在自然语言处理中用于减少词汇变化,将单词归结为其基本形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

Stemming 可以抽取词的词干或词根形式,NLTK中提供了三种最常用的词干提取器接口

'''基于Porter词干提取算法'''

from nltk.stem.porter import PorterStemmer
porter_stemmer = PorterStemmer()

porter_stemmer.stem(‘multiply’)  #  u’multipli’

''' 基于Lancaster 词干提取算法  '''
from nltk.stem.lancaster import LancasterStemmer

lancaster_stemmer = LancasterStemmer()
lancaster_stemmer.stem(‘multiply’)      #  ‘multiply’ 

'''基于Snowball 词干提取算法   ''''
from nltk.stem import SnowballStemmer

snowball_stemmer = SnowballStemmer(“english”)
snowball_stemmer.stem(‘multiply’)   #  u’multipli’

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值