自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 资源 (3)
  • 收藏
  • 关注

原创 值得信赖的AI:从原则到实践(Trustworthy AI: From Principles to Practices)

人工智能(Artificial Intelligence,AI)技术的快速发展使得基于AI的各种系统得以部署,然而,目前的许多AI系统都容易受到不可感知的攻击,对代表性不足的群体有偏见,缺乏用户隐私保护。这些缺点降低了用户体验,削弱了人们对所有AI系统的信任。在这篇综述中,我们为人工智能从业者提供了一个构建可信人工智能系统的全面指南。我们首先介绍了人工智能可信度重要方面的理论框架,包括鲁棒性,泛化性,可解释性,透明度,可重复性,公平性,隐私保护和问责制。

2024-12-15 15:53:03 1248

原创 斯坦福大学发布最新AI形势报告(2024)第七章:Policy and Governance

人工智能日益增强的能力引起了政策制定者的注意。在过去的一年里,一些国家和政治机构,如美国和欧盟,已经制定了重要的人工智能相关政策。这些政策的激增反映出政策制定者越来越意识到需要监管人工智能,并提高各自国家利用其变革潜力的能力。本章从2023年重大人工智能政策制定事件的时间轴开始研究全球人工智能治理。然后,它分析了全球和美国的人工智能立法工作,研究了人工智能立法提及,并探讨了地球仪的立法者如何看待和讨论人工智能。接下来,本章介绍了美国和欧盟的国家人工智能战略和监管工作。

2024-12-13 19:41:30 1538

原创 斯坦福大学发布最新AI形势报告(2024)第六章:Education

本章探讨了人工智能和计算机科学(CS)教育的趋势,重点是谁在学习,他们在哪里学习,以及这些趋势如何随着时间的推移而演变。随着人们越来越担心人工智能对教育的影响,它还调查了教师和学生使用ChatGPT等新人工智能工具的情况。分析首先根据计算研究协会的年度陶尔比调查概述了美国和加拿大的中学后计算机科学和人工智能教育状况。然后,它回顾了欧洲信息学关于欧洲CS教育的数据。今年引入了一个新的部分,其中包含来自Studyportals的关于AI相关英语学习项目全球统计的数据。

2024-12-13 12:00:25 706

原创 斯坦福大学发布最新AI形势报告(2024)第五章:Science and Medicine

今年的人工智能指数为人工智能在科学和医学中的应用开辟了新的篇章,以表彰人工智能在科学和医学发现中日益重要的作用。它探讨了2023年杰出的人工智能促进的科学成就,包括先进的天气预报系统,如GraphCast和改进的材料发现算法,如GNOME。本章还研究了医疗AI系统的性能,2023年AI驱动的重要医疗创新,如SynthSR和ImmunoSEIRA,以及FDA AI相关医疗设备的批准趋势。

2024-12-12 13:32:36 1776

原创 斯坦福大学发布最新AI形势报告(2024)第四章:Economy

人工智能融入经济提出了许多引人注目的问题。一些人预测,人工智能将推动生产力的提高,但其影响程度仍不确定。一个主要的担忧是大规模劳动力转移的可能性-工作将在多大程度上被自动化而不是被人工智能增强?各行业的公司已经在以各种方式利用人工智能,但世界上一些地区正在目睹更多的投资流入这一变革性技术。此外,投资者的兴趣似乎正被自然语言处理和数据管理等特定的人工智能子领域所吸引。

2024-12-12 00:17:09 1155 2

原创 《State of AI Agents》AI Agents 现状报告-LangChain发布最新报告

我们调查了 1,300 多名专业人士(从工程师和产品经理到业务领导者和高管),以揭示 AI 代理的现状。在我们分解当今 AI 代理的使用方式(或未使用)时,深入研究数据。

2024-12-11 16:31:27 1257

原创 斯坦福大学发布最新AI形势报告(2024)第三章:Responsible AI

人工智能越来越多地融入我们生活的方方面面。这种整合正在教育、金融和医疗保健等领域发生,这些领域的关键决策往往基于算法洞察。这一趋势有望带来许多好处,但也带来了潜在的风险。因此,在过去的一年里,人们一直非常关注人工智能系统的负责任开发和部署。人工智能社区也越来越关注评估人工智能系统的影响,并减轻受影响者的风险。本章通过检查四个关键的负责任人工智能领域的指标,研究和基准来探索负责任人工智能的主要趋势:隐私和数据治理,透明度和可解释性,安全性和安全性以及公平性。

2024-12-10 16:24:10 1067

原创 斯坦福大学发布最新AI形势报告(2024)第二章:Technical Performance

今年人工智能指数的技术性能部分提供了2023年人工智能进步的全面概述。它从AI技术性能的高级概述开始,跟踪其随时间的广泛演变。然后,本章探讨了各种人工智能功能的现状,包括语言处理、编码、计算机视觉(图像和视频分析)、推理、音频处理、自主代理、机器人技术和强化学习。它还重点关注了过去一年中人工智能研究的显着突破,探索通过提示、优化和微调来改进LLM的方法,并以探索人工智能系统的环境足迹作为结束。

2024-12-10 02:05:14 1258

原创 斯坦福大学发布最新AI形势报告(2024)第一章:Research and Development

欢迎阅读第七版人工智能指数报告。2024年指数是我们迄今为止最全面的指数,是AI对社会的影响空前显著的重要时刻。今年,我们扩大了范围,更广泛地涵盖基本趋势,如人工智能的技术进步、公众对该技术的看法以及围绕其发展的地缘政治动态。本版比以往任何时候都具有更多的原始数据,介绍了人工智能培训成本的新估计,对负责任的人工智能景观的详细分析,以及专门讨论人工智能对科学和医学的影响的全新章节。AI索引报告跟踪、整理、提取和可视化与人工智能(AI)相关的数据。

2024-12-09 23:00:36 3150

原创 世界模型爆发!Meta FAIR 的 Yann LeCun 团队继 World Labs(李飞飞)、谷歌 DeepMind后加入战场!《Navigation World Models》

导航是具有视觉运动能力的智能体的基本技能。我们介绍了导航世界模型(NWM),一个可控的视频生成模型,预测未来的视觉观察的基础上,过去的观察和导航行动。为了捕捉复杂的环境动态,NWM采用了条件扩散Transformer(CDiT),在人类和机器人代理的各种自我中心视频集合上进行训练,并扩展到10亿个参数。在熟悉的环境中,NWM可以通过模拟它们并评估它们是否达到预期目标来规划导航轨迹。与具有固定行为的监督导航策略不同,NWM可以在规划过程中动态地引入约束。

2024-12-09 16:27:41 1689

原创 比Scaling Law更有效,清华刘知远团队提出LLM的密度定律(Densing Law of LLMs)

大型语言模型(LLM)已经成为人工智能领域的一个里程碑,其性能可以随着模型大小的增加而提高。然而,这种扩展给训练和推理效率带来了巨大的挑战,特别是对于在资源受限的环境中部署LLM,并且扩展趋势变得越来越不可持续。本文介绍了“容量密度”的概念,作为一个新的度量标准,以评估质量的LLM在不同的规模和描述的趋势LLM的有效性和效率。为了计算给定目标LLM的容量密度,我们首先引入一组参考模型,并根据这些参考模型的参数大小开发一个标度律来预测这些参考模型的下游性能。

2024-12-08 13:53:29 882

原创 小语言模型综述(A Survey of Small Language Models)-全文中文翻译

小型语言模型(SLM)由于其以最少的计算资源执行各种语言任务的效率和性能而变得越来越重要,使其成为各种设置的理想选择,包括设备上,移动的,边缘设备等。在这篇文章中,我们提出了一个全面的调查SLM,专注于他们的架构,训练技术和模型压缩技术。我们提出了一种新的分类法,用于分类的方法来优化SLM,包括模型压缩,修剪和量化技术。我们总结了基准数据集,是有用的基准SLM沿着与常用的评估指标。此外,我们强调了仍有待解决的关键开放性挑战。

2024-12-07 21:56:31 1237

原创 人工智能融入学校教育的潜在风险:系统评价 (Potential Risks of Artificial Intelligence Integration into School Education)

目前,人工智能(AI)正在迅速融入K-12教育,因为它在社会和教育学上的重要性越来越大。AI在K-12教育中的整合可能会对学习者的生活和学习方式、教师的教学方法以及学校管理系统的整个机制产生深远的影响。由于AI技术在K-12学校课程中是新的,因此K-12教室的AI研究正在探索中。在这项研究中,我们探讨了学校教育中AI整合的现状及其相关风险。该研究采用系统回顾方法,试图探索最近关于K-12教育中AI整合的可能风险因素的研究结果,观察结果和结果。在使用预定义的关键词进行初始检索时,共记录了390篇文章。

2024-12-07 13:09:04 999

原创 继李飞飞团队后-谷歌DeepMind团队发表最强“基础世界模型”

以下是人们与 Genie 2 互动的示例视频。它是在大规模视频数据集上训练的,与其他生成模型一样,它大规模展示了各种新兴功能,例如对象交互、复杂的角色动画、物理学,以及建模并因此预测其他代理行为的能力。今天我们介绍的是 Genie 2,这是一个基础世界模型,能够生成各种可操作、可玩的 3D 环境,用于训练和评估具体代理。虽然这项研究仍处于早期阶段,在代理和环境生成能力方面还有很大的改进空间,但我们相信 Genie 2 是解决安全训练具体代理的结构性问题的途径,同时实现迈向 AGI 所需的广度和普遍性。

2024-12-05 17:54:25 835

原创 李飞飞团队-空间智能首秀:AI靠单图生成3D世界,可探索,遵循基本物理几何规则

一间充满活力的卡通风格青少年卧室,床上铺着五颜六色的毯子,杂乱的书桌上放着一台电脑,墙上贴着海报,运动装备散落。在这篇文章中,您将探索我们生成的世界,这些世界在您的浏览器中实时呈现。今天,我们将分享我们迈向空间智能的第一步:从单个图像生成 3D 世界的 AI 系统。我们正在努力提高生成世界的大小和保真度,并尝试让用户与它们交互的新方式。不同的模型有自己的风格,我们的世界可以继承这些风格。我们已经让一些创作者提前了解了我们的技术,以开始试验 3D 原生生成式 AI 工作流程带来的可能性。

2024-12-05 01:37:17 1151

原创 美国教育技术办公室发布《用人工智能设计教育:开发人员必备指南》-中文全文翻译

今天和未来,越来越多的人工智能 (AI) 模型和功能将被整合到专门服务于教育环境的产品中。美国教育部致力于鼓励教育技术的创新进步,改善全国教育系统的教学和学习,并支持开发人员使用 AI 为教育市场创建产品和服务。本指南以该系之前的报告《人工智能和教与学的未来:见解和建议》为基础,旨在为产品负责人及其创新者、设计师、开发人员、面向客户的员工和法律团队提供信息,因为他们在创建用于教育的 AI 产品和服务时努力实现安全、保障和信任。这种前景比构建大型语言模型 (LLM) 或部署聊天机器人的范围更广;

2024-12-04 17:24:49 1068

原创 多智能体强化学习中的高效训练:一个无需通信的箱子推动问题框架

自组织系统由自治代理组成,可以在没有中央控制器的情况下执行复杂任务并适应动态环境。以前的研究通常依赖于强化学习,使智能体能够获得完成任务所需的技能,例如在推箱环境中。然而,当智能体在探索过程中从相反的方向推动时,它们往往会在盒子上施加相等和相反的力,从而导致最小的位移和低效的训练。本文提出了一种共享信息池(SPI)模型,该模型使信息对所有Agent都是可访问的,便于Agent之间的协调和减少力量冲突,从而提高了探索效率。

2024-12-04 01:38:27 905

原创 美国数字承诺发布“人工智能素养框架”《AI Literacy: A Framework to Understand, Evaluate, and Use Emerging Technology》-中文

为了使所有参与教育环境的人都能利用 AI 工具进行强大的学习,本文描述了一个框架和策略,供教育领导者为其特定受众(例如学习者、教师或其他人)设计和实施安全有效的 AI 素养方法。本文的第一部分描述了一个框架,该框架确定了 AI 素养的基本组成部分,并将它们与学区几十年来一直在实施的现有举措联系起来。本文的第二部分确定了策略和说明性示例,作为教育领导者将 AI 素养整合到 PK-12 教育中并适应其独特环境的指导。

2024-12-03 15:22:18 1445

原创 Reward Hacking in Reinforcement Learning (翁荔离职OpenAI后, 万字长文探讨RLHF的漏洞)

强化学习中的奖励塑形是具有挑战性的。当强化学习代理利用奖励函数中的缺陷或模糊性来获得高奖励,而实际上并没有真正学到预期的行为或按照设计完成任务时,就会发生奖励黑客行为。奖励黑客(Amodei等人,2016)奖励腐败(Everitt等人,2017)奖励篡改(Everitt等人,2019)规格游戏(Krakovna等人,2020)目标鲁棒性(Koch等人,2021)目标错误泛化(Langosco等人,2022)奖励规范错误(Pan等人,2022)

2024-12-03 01:58:00 892

原创 全网最全最完整——联合国教科文组织《学生人工智能能力框架》AI competency framework for students-全文中文翻译

培养学生成为AI时代负责任和创造力的公民人工智能(AI)越来越多地融入我们的生活,需要积极主动的教育系统来培养学生成为负责任的用户和AI的共同创造者。将人工智能学习目标纳入正式的学校课程,对于全球学生安全、有意义地参与人工智能至关重要。联合国教科文组织针对学生的人工智能能力框架旨在帮助教育工作者进行这种整合,概述了四个方面的12项能力:以人为本的思维方式,人工智能伦理,人工智能技术和应用以及人工智能系统设计。这些能力跨越三个发展级别:理解、应用和创造。该框架详细说明了课程目标和特定领域的教学方法。

2024-12-02 19:08:04 2907

原创 基于大语言模型的智能Agent研究:定义、方法与展望(Large Language Model Based Intelligent Agents)

智能代理是通往通用人工智能(AGI)的一条潜在道路。因此,研究人员已经投入了大量的精力来实现它们。受益于大型语言模型(LLM)的最新进展,使用通用自然语言作为接口的基于LLM的代理在各种应用中表现出强大的泛化能力-从作为自主通用任务助手到编码,社会和经济领域的应用,基于LLM的代理提供了广泛的探索机会。本文调查了目前的研究,提供了一个深入的概述基于LLM的智能代理在单代理和多代理系统。它涵盖了它们的定义,研究框架和基本组成部分,如它们的组成,认知和规划方法,工具的利用,以及对环境反馈的反应。

2024-12-01 17:54:54 1007

原创 Efficient Multimodal Large Language Models: A Survey (高效多模态大型语言模型综述-全文翻译)

在过去的一年中,多模态大语言模型(MLLM)在视觉问题回答、视觉理解和推理等任务中表现出了显著的性能。然而,模型规模大、训练和推理成本高等问题阻碍了MLLM在学术界和工业界的广泛应用。因此,研究高效和轻量级的MLLM具有巨大的潜力,特别是在边缘计算场景中。在本调查中,我们提供了一个全面的和系统的审查,目前的状态,有效的MLLM。具体而言,本文总结了典型的高效多层线性模型的时间轴、高效结构和策略的研究现状以及应用。最后,本文对目前MLLM研究的局限性进行了讨论,并展望了未来的研究方向。

2024-12-01 00:18:58 1783

原创 The Extent and Consequences of P-Hacking in Science (科学中的P-Hacking的程度和后果-全文翻译)

关注新的、确证性的和统计学显著性的结果会导致科学文献中存在大量偏倚。当研究人员收集或选择数据或统计分析直到不重要的结果变得重要时,就会出现一种被称为“p黑客”的偏见。在这里,我们使用文本挖掘来证明p-hacking在整个科学领域都很普遍。然后,我们说明了如何可以测试p-黑客时,进行荟萃分析,并表明,虽然p-黑客可能是常见的,其效果似乎是弱相对于正在测量的真实的效果大小。这一结果表明,p-hacking可能不会彻底改变从荟萃分析中得出的科学共识。

2024-11-29 22:16:53 1014

原创 A new golden age of discovery Seizing the AI for Science opportunity (AI加速科学创新发现的黄金时代,DeepMind最新报告)

在这篇文章中,我们将介绍人工智能如何改变科学学科,从基因组学到计算机科学再到天气预报。一些科学家正在训练他们自己的人工智能模型,而另一些科学家正在微调现有的人工智能模型,或者使用这些模型的预测来加速他们的研究。科学家们正在使用人工智能作为一种科学工具来帮助解决重要的问题,例如设计与疾病靶点更紧密结合的蛋白质,但也在逐渐改变科学本身的实践方式。

2024-11-29 01:26:26 2037

原创 AGENT AI: SURVEYING THE HORIZONS OF MULTIMODAL INTERACTION (李飞飞团队智能体研究综述-中文翻译完整版本)

多模态AI系统可能会在我们的日常生活中无处不在。使这些系统更具交互性的一个有前途的方法是将它们体现为物理和虚拟环境中的代理。目前,系统利用现有的基础模型作为创建具体代理的基本构建块。在这样的环境中嵌入代理有助于模型处理和解释视觉和上下文数据的能力,这对于创建更复杂和上下文感知的AI系统至关重要。例如,可以感知用户动作、人类行为、环境对象、音频表达和场景的集体情感的系统可以用于通知和指导给定环境内的代理响应。为了加速基于代理的多模态智能的研究,我们将“代理人工智能”定义为一类交互系统,可以感知视觉刺激、语言输

2024-11-28 22:11:49 2033 1

原创 腾讯云Ubuntu server 16.04.1LTS64位部署python3+Flask+nginx+uwsgi+MySQL5.7网站——完整小白教程

一、相关背景1.1 一点碎碎念相信大家做网站开发都会有个想法,就是把自己的网站真正部署到网络上,让别人能够像访问其他网站一样访问自己的网站。在没有云服务之前,我们可能还需要搭建自己的服务器才能做到,但现在各种云服务的兴起,让我门能够不用管太多底层实现细节,就能将自己的网站部署到服务器上,可以说方便之极。但就算是这样,通过云部署仍然有许多的坑,之前在网上找了很多教程,但是都不太完善,终于七拼八凑地把这个给部署流程给走通,现在把这整个的能够走通的流程整理出来,希望做完网站开发的同学也能将自己的网站分享链

2020-10-04 12:21:44 1117

原创 Claude-构建有效的智能体(Building effective agents)

在过去的一年里,我们与数十个团队合作,跨行业构建大型语言模型 (LLM) 代理。始终如一,最成功的实现并不使用复杂的框架或专门的库。相反,他们使用简单、可组合的模式进行构建。在这篇文章中,我们分享了我们从与客户和建筑代理合作中学到的知识,并为开发商提供构建有效代理的实用建议。

2024-12-22 20:46:03 1207

原创 四种多Agent范式哪种最好?用于对话任务解决的多代理大型语言模型 Multi-Agent Large Language Models for Conversational Task-Solving

在单个大型语言模型多年来主宰人工智能领域的时代,多智能体系统在对话任务解决中崭露头角。此前的研究虽已展现出其在推理任务和创新尝试方面的潜力,但对于其在对话范式方面的局限以及个体智能体的影响,却缺乏分析。多智能体讨论在不同复杂程度任务中的表现怎样,以及这些对话的结构如何影响进程,都尚不明确。为填补这一空缺,本工作对各种讨论范式下的多智能体系统进行了系统评估,衡量了它们在生成任务和问答任务中的优劣。

2024-12-17 15:33:00 1153

原创 Google DeepMind 智能体思考快与慢:说话者-推理者架构(Agents Thinking Fast and Slow: A Talker-Reasoner Architecture)

大型语言模型使各种代理能够通过自然对话与用户进行交互。因此,代理人现在有两项工作:对话和计划/推理。他们的对话反应必须基于所有可用信息,他们的行动必须有助于实现目标。与用户交谈和进行多步骤推理和规划之间的这种二分法可以被视为类似于卡尼曼[14]引入的“快思考和慢思考”的人类系统。我们的方法由一个快速且直观的“Talker”代理(系统 1)组成,其任务是合成对话响应;

2024-12-16 20:31:42 670

原创 从个体到社会:基于大语言模型的Agent驱动的社会模拟研究综述

传统的社会学研究往往依赖于人的参与,虽然有效,但昂贵,规模具有挑战性,并且存在伦理问题。大型语言模型(LLM)的最新进展突出了它们模拟人类行为的潜力,使个体响应的复制成为可能,并促进了许多跨学科研究的研究。在本文中,我们对这一领域进行了全面的调查,说明了LLM授权代理驱动的模拟的最新进展。我们将模拟分为三种类型:(1)个人模拟,模仿特定的个人或人口统计群体;(2)场景模拟,多个代理在特定的背景下合作实现目标;(3)社会模拟,模拟代理社会中的互动,以反映现实世界动态的复杂性和多样性。

2024-12-16 07:14:27 1616

原创 UNESCO联合国教科文组织《教师人工智能能力框架》-AI competency framework for teachers

人工智能处理大量信息,生成新内容,并通过预测分析帮助决策制定。在教育领域,人工智能已经将传统的师生关系转变为教师-人工智能-学生的动态关系。这种转变需要重新审视教师在AI时代的角色和所需能力。然而,很少有国家定义了这些能力或制定了培训人工智能教师的国家计划,使许多教育工作者没有适当的指导。针对教师的AI能力框架通过定义教师在AI时代必须掌握的知识、技能和价值观来解决这一差距。

2024-12-15 00:00:49 1752

原创 斯坦福大学发布最新AI形势报告(2024)第九章:Public Opinion

随着人工智能变得越来越普遍,了解公众对该技术的看法如何演变非常重要。了解这种公众意见对于更好地预测人工智能的社会影响以及技术的整合如何在不同国家和人口群体之间存在差异至关重要。本章从全球、国家、人口和种族的角度考察了公众对人工智能的看法。它利用了几个数据源:益普索的纵向调查数据,分析了全球人工智能的态度,多伦多大学的调查数据,探索公众对ChatGPT的看法,以及皮尤研究美国人对人工智能的态度。本章最后使用Quid的数据分析了Twitter上提到的重要AI模型。

2024-12-14 11:59:28 876

原创 斯坦福大学发布最新AI形势报告(2024)第八章:Diversity

AI开发人员的人口统计数据通常与用户不同。例如,相当多的知名人工智能公司和用于模型训练的数据集来自西方国家,从而反映了西方的观点。缺乏多样性会使社会不平等和偏见长期存在,甚至加剧。本章深入探讨了人工智能的多样性趋势。本章首先利用计算研究协会(CRA)的数据,提供美国和加拿大计算机科学(CS)部门的多样性状况的见解。今年分析的一个值得注意的补充是来自欧洲信息学的数据,它揭示了欧洲计算机科学教育的多样性趋势。

2024-12-14 00:09:56 639

原创 人工智能教育的经济案例:重塑国家的经济案例(全球变化研究所)-全文中文翻译

人工智能有可能通过三个关键渠道显着提高学生的学习成绩。它可以通过教师的人工智能辅助飞行员来提高教学质量,这有助于课程规划,学生评估和数据分析。例如,世纪科技等学校的人工智能平台已经分析了学生数据,帮助教师以更有针对性的方式解决学生的弱点。教师们开始在教育技术工具中使用人工智能算法来更快地给学生的作业打分。它有能力通过人工智能导师机器人来提高学生吸收课程内容的能力,人工智能导师机器人可以定制个性化内容并提供实时反馈。AI教育科技初创公司一直处于构建聊天机器人式学习的最前沿,其中AI导师模仿人类教师。

2024-12-08 00:32:05 844

原创 在神经科学预测领域,大语言模型超越人类- Nature 子刊: LLM surpass human experts in predicting neuroscience results

科学发现往往取决于综合几十年的研究,这一任务可能超过人类的信息处理能力。大型语言模型(LLM)提供了一个解决方案。经过大量科学文献培训的LLM可能会整合嘈杂但相互关联的发现,以比人类专家更好地预测新的结果。为了评估这种可能性,我们创建了BrainBench,这是一个预测神经科学结果的前瞻性基准。我们发现LLM在预测实验结果方面超过了专家。BrainGPT是我们根据神经科学文献调整的LLM,表现更好。

2024-12-02 15:40:42 336

原创 Large Language Model based Multi-Agents: A Survey of Progress and Challenges (基于大语言模型的多智能体:进展与挑战综述)

大型语言模型(LLM)在广泛的任务中取得了显着的成功。由于LLM令人印象深刻的规划和推理能力,它们已被用作自动执行许多任务的自治代理。近年来,基于LLM的多智能体系统在将一个LLM作为单个规划或决策智能体的基础上,在复杂问题求解和世界仿真方面取得了长足的进步。为了向社区提供这个动态领域的概述,我们提出了这项调查,以提供基于LLM的多智能体系统的基本方面以及挑战的深入讨论。我们的目标是让读者对以下问题获得实质性的见解:基于LLM的多代理模拟哪些领域和环境?这些代理人是如何分析的,他们如何沟通?

2024-12-01 23:47:05 474

原创 Multimodal Pretraining, Adaptation, and Generation for Recommendation: A Survey (多模态预训练、自适应与推荐生成研究综)

个性化推荐为用户提供了一个无处不在的渠道来发现适合他们兴趣的信息。然而,传统的推荐模型主要依赖于唯一的ID和分类特征来进行用户与项目的匹配,可能会忽视文本、图像、音频和视频等多种形式的原始项目内容的细微差别。多模式数据的利用率不足对推荐系统构成了限制,特别是在新闻、音乐和短视频平台等多媒体服务中。近年来,大型多模态模型的发展为内容感知推荐系统的开发提供了新的机遇和挑战。本调查旨在全面探索多模式预训练,适应和生成技术的最新进展和未来轨迹,以及它们在增强推荐系统中的应用。

2024-12-01 14:11:33 725

原创 Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond (基于大语言模型的推荐系统:综述与展望)-全文翻译

面向下一代基于LLM的推荐系统:综述和超越王琦大型语言模型(LLM)不仅彻底改变了自然语言处理(NLP)领域,而且由于其卓越的语言理解能力,以及令人印象深刻的泛化能力和推理能力,有可能在许多其他领域带来范式转变。因此,最近的研究积极尝试利用LLM的力量来改善推荐系统,并且必须彻底审查基于LLM的推荐系统的最新进展和挑战。与现有的工作不同,这项调查并不只是根据LLM的技术框架分析基于LLM的推荐系统的分类。

2024-11-29 17:41:51 810

原创 Flask2.0版本flaks_script无法使用的问题:ModuleNotFoundError: No module named ‘flask._compat’

报错的原因是新版本的flask已经不再支持flask_script了,而是使用自带的cli替代。

2023-04-21 15:32:09 551

原创 flask报错if current_user.is_authenticated:‘str‘ object has no attribute ‘is_authenticated‘

清除浏览器里面的cookie,再刷新就可以正常使用了。应该是修改数据库后,还是原来的用户,因此会报错。

2022-01-27 23:18:56 1199

美国教育技术办公室发布《用人工智能设计教育:开发人员必备指南》-中文全文翻译

美国教育技术办公室发布《用人工智能设计教育:开发人员必备指南》-中文全文翻译

2024-12-04

AI competency framework for students

联合国教科文组织:人工智能(AI)越来越多地融入我们的生活,需要积极主动的教育系统来培养学生成为负责任的用户和AI的共同创造者。将人工智能学习目标纳入正式的学校课程,对于全球学生安全、有意义地参与人工智能至关重要。联合国教科文组织针对学生的人工智能能力框架旨在帮助教育工作者进行这种整合,概述了四个方面的12项能力:以人为本的思维方式,人工智能伦理,人工智能技术和应用以及人工智能系统设计。这些能力跨越三个发展级别:理解、应用和创造。该框架详细说明了课程目标和特定领域的教学方法。

2024-12-02

simple_app.rar

一个简单的可运行的flask网站,支持用户登录和注册,并且可以连接数据库,可用于进行服务器部署时进行测试。

2020-10-03

navicat150_mysql.rar

Navicat 15 具备多项改进和新功能,能满足你对数据库开发的需求。过百种增强的功能和耳目一新的界面,让你以崭新的方式创建、管理和维护数据库。

2020-10-03

WinSCP_5.17.7_Setup.rar

WinSCP是一个支持SSH的SCP文件传输软件。WinSCP中文版体积小、占用系统资源少。操作简单,只需要连接相应的服务器就可以进行下载和传输文件。重要的是WinSCP中文版软件还有着很多特色的功能,有着内置的文本编辑器,可以支持文件的复制、移动、更名文件等操作,为你带来高效便捷的使用体验。

2020-10-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除