论文总结:用基于注意力机制的卷积神经网络进行因果发现

Causal discovery with attention-based convolutional neural networks


本文针对时序数据的因果推断,提出了一个 时序因果发现框架TCDF(Temporal Causal Discovery Framework),开创性地利用深度学习强大的表达能力发现时序数据中的因果关系,并构造因果关系图。TCDF使用了基于注意力机制的卷积神经网络和一个因果验证步骤。TCDF能学习出包含混杂因子和瞬时效应的因果关系图,也能通过解释CNN中的参数发现变量间的因果时延,还能发现特定情况下隐藏混杂因子的存在。通过对比可以发现,本文的工作为复杂系统的时序因果发现提供了一个全新的视角。

问题描述

时序因果发现的目标是给定时间序列 X = { x 1 , … , x n } X = \{x_1,\dots,x_n\} X={ x1,,xn},( x i = { x i 1 , x i 2 , … , x i t , … , x i T } x_i=\{x_i^{1},x_i^2,\dots,x_i^t,\dots,x_i^T\} xi={ xi1,xi2,,xit,,xiT}),构造因果关系图,如下图所示,因果图中的有向边被标注为因果时延。时序因果推断则是根据因果关系图和其它变量在时刻 T T T以及 T T T之前的值预测变量在时刻 T T T的值。之所以会用到其它变量在时刻 T T T的值,是因为因果图中的变量间可能存在瞬时效应。
时序数据因果发现

时序因果发现框架TCDF

时序数据的因果发现与非时序数据的因果发现最大的一点不同是,时序数据中包含时间属性,而原因一定不会晚于结果的发生,是判断因果方向的重要依据。TCDF包含四个部分:

  1. 时序预测:使用卷积神经网络对时序数据建模,针对每一个变量,用其它变量在时刻 T T T以及 T T T之前的值回归并预测该变量在时刻 T T T的值。
  2. 注意力解释:TCDF在卷积神经网络中采用了注意力机制,根据学习到的不同变量的注意力系数,可以将注意力系数解释为变量间的相关程度,低于一定阈值就可以认为两个变量没有因果关系。
  3. 因果验证:注意力机制只能发现可能的因果关系,需要进一步验证。
  4. 时延发现:除了因果发现,TCDF还能通过CNN中的参数发现变量间因果效应的时延。
    TCDF概览
    TCDF具体结构如下:
    TCDF

时序预测

本文的工作基于通用时序卷积网络(TCN)进行扩展。TCN为卷积神经网络架构,其中卷积核维度为1、长度为 K K K,有 L L L个隐藏层。对于单层网络,感受域(网络能感知到的时间步)为卷积核的长度 K K K,为了发现因果关系,感受域应该不小于因果时延。为扩大感受域,可以增加隐藏层的数量 L L L或卷积核的长度 K K K,CNN的感受域为 R C N N = 1 + ( L + 1 ) ( K − 1 ) = 1 + ∑ i = 0 L ( K − 1 ) (1) R_{CNN}=1+(L+1)(K-1)=1+\sum_{i=0}^{L}(K-1)\tag{1} RCNN=1+(L+1)(K1)=1+i=0L(K1)(1)而TCN则使用了扩张卷积(dilated convolutioon),卷积核以步长 f = c l f = c^l f=cl跳过部分输入,其中 f f f为扩张因子, c c c为扩张系数, l l l为卷积核所在的层。如Figure 5所示,扩张TCN(D-TCN)的感受域为 R D − T C N = 1 + ∑ l = 0 L ( K − 1 ) ⋅ c l (2)

  • 10
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值