人工智能学习之深度学习
文章平均质量分 96
Roar冷颜
从事于无人驾驶、车路协同领域
展开
-
PyTorch框架学习(二) — 一文精通张量操作
PyTorch框架学习 — 张量操作与线性回归1 张量的操作1.1 拼接1 张量的操作1.1 拼接torch.cat()torch.cat(tensors, dim=0, *, out=None) → Tensor【功能】:将张量按照 dim 维度进行拼接,所有张量必须具有相同的形状。...原创 2021-11-25 16:59:24 · 3257 阅读 · 11 评论 -
PyTorch框架学习(一) — Tensor(张量)详解
PyTorch框架学习 — Tensor(张量)详解原创 2021-11-19 14:58:09 · 7580 阅读 · 7 评论 -
吴恩达《神经网络和深度学习》第四周编程作业—深度神经网络应用--Cat or Not?
吴恩达《神经网络和深度学习》— 深度神经网络应用--Cat or Not?※※※※※上一篇:【构建深度神经网络】※※※※※ 在这篇文章中,我们将使用在上一篇文章中实现的函数来构建深层网络,并将其应用于分类cat图像和非cat图像。希望你会看到相对于先前的逻辑回归实现的分类,准确性有所提高。学完本篇文章将掌握的技能: ∙\bullet∙ 建立深度神经网络并将其应用于监督学习...原创 2021-11-16 16:55:54 · 3023 阅读 · 1 评论 -
吴恩达《神经网络和深度学习》第四周编程作业—构建深度神经网络
吴恩达《神经网络和深度学习》— 构建深度神经网络1 安装包2 构建深度神经网络的框架3 初始化3.1 两层神经网络参数的初始化3.2 L层神经网络参数的初始化4 前向传播模块4.1 线性前向4.2 前向线性激活4.3 L层模型5 损失函数6 后向传播模块※※※※※上一篇:【用一层隐藏层的神经网络分类二维数据】※※※※※ 在上一篇教程中我们已经训练了一个两层的神经网络(只有一个隐藏层)。这篇文章,我们将学会构建一个任意层数的深度神经网络,并实现构建深度神经网络所需的所有函数!学完本篇文章将掌握的技原创 2021-11-16 00:46:03 · 3346 阅读 · 1 评论 -
吴恩达《神经网络和深度学习》第三周编程作业—用一层隐藏层的神经网络分类二维数据
吴恩达《神经网络和深度学习》—用一层隐藏层的神经网络分类二维数据1 安装包2 数据集 现在是时候建立你的第一个神经网络了,它将具有一层隐藏层。你将看到此模型与你使用逻辑回归实现的模型之间的巨大差异。做完该作业将掌握的技能: ∙\bullet∙ 实现具有单个隐藏层的二分类神经网络 ∙\bullet∙ 使用具有非线性激活函数的神经元,例如tanh ∙\bullet∙ 计算交叉熵损失 ∙\bullet∙ 实现前向和后向传播 本文所使用的资料:【点击下载】,提取码:rc4u。请在开始之原创 2021-11-12 12:22:22 · 4634 阅读 · 2 评论 -
吴恩达《神经网络和深度学习》第二周编程作业—用神经网络思想实现逻辑回归
吴恩达《神经网络和深度学习》编程作业—用神经网络思想实现逻辑回归1 安装包2 问题概述做完该作业将掌握的技能: ∙\bullet∙ 建立学习算法的一般架构,包括: (1)初始化参数 (2)计算损失函数及其梯度 (3)使用优化算法(梯度下降) ∙\bullet∙ 按正确的顺序将以上所有三个功能集成到一个主模型上。 本文所使用的资料:【点击下载】,提取码:xoyp。请在开始之前下载好所需资料,然后将文件解压到你的代码文件同一级目录下,请确保你的代码那里有lr_utils原创 2021-11-10 15:32:56 · 4697 阅读 · 0 评论 -
吴恩达《神经网络和深度学习》第二周编程作业—numpy入门,函数向量化实现
吴恩达《神经网络和深度学习》课程作业—numpy入门,函数向量化实现1 使用numpy构建基本函数1.1 sigmoid function和np.exp()1.2 Sigmoid gradient1.3 重塑数组1.4 行标准化1.5 广播和softmax函数2 向量化2.1 向量和矩阵的点积、内积和对应元素逐个相乘运算2.2 实现L1和L2损失函数做完该作业将掌握的技能: ∙\bullet∙ 会使用numpy,包括函数调用及向量矩阵运算 ∙\bullet∙ 理解Python中“广原创 2021-11-09 13:43:23 · 5094 阅读 · 0 评论