利用 LangChain 实现高级混合检索:深入探讨 Hybrid Search
引言
在人工智能和自然语言处理领域,高效的信息检索系统至关重要。传统的向量相似度搜索虽然强大,但在某些场景下可能无法满足复杂的查询需求。本文将深入探讨 LangChain 中的混合搜索(Hybrid Search)技术,这种方法结合了向量相似度搜索和其他搜索技术(如全文搜索、BM25 等),以提供更精确和灵活的检索结果。
什么是混合搜索?
混合搜索是一种结合多种搜索技术的高级检索方法。它通常包括:
- 向量相似度搜索:基于嵌入(embeddings)的语义相似度匹配。
- 传统搜索技术:如全文搜索、关键词匹配、BM25 算法等。
通过结合这些技术,混合搜索可以在保持语义相关性的同时,提高检索的精确度和召回率。
在 LangChain 中实现混合搜索
步骤 1:选择支持混合搜索的向量存储
首先,确保你使用的向量存储支持混合搜索。目前支持混合搜索的向量存储包括:
- Astra DB
- ElasticSearch
- Neo4J
- AzureSearch
- Qdrant
等等。每个向量存储可能有其特定的实现方式,通常是通过 similarity_search
方法的关键字参数来实现。
步骤 2:为链配置可配置字段
为了在运行时轻松配置混合搜索参数,我们需要将相关参数设置为链的可配置字段。
步骤 3:使用可配置字段调用链
在运行时,我们可以通过配置字段来调用链,实现混合搜索。
代码示例
让我们以 Astra DB 为例,展示如何在 LangChain 中实现混合搜索。
首先,安装必要的包:
pip install "cassio>=0.1.7"
初始化 cassio:
import cassio
cassio.init(
database_id="Your database ID",
token="Your application token",
keyspace="Your key space",
)
<