PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

标题: PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

内容:

PGVector: 利用 PostgreSQL 实现高效的向量存储与检索

引言

在人工智能和机器学习领域,向量存储和相似性搜索是非常重要的技术。PGVector 是 LangChain 生态系统中的一个强大组件,它利用 PostgreSQL 数据库和 pgvector 扩展来实现高效的向量存储和检索。本文将深入探讨 PGVector 的使用方法、主要特性以及在实际应用中的优势。

PGVector 简介

PGVector 是 LangChain 向量存储抽象的一个实现,它使用 PostgreSQL 作为后端,并利用 pgvector 扩展来支持向量操作。这个组件位于一个名为 langchain_postgres 的集成包中。

主要特点:

  • 使用 PostgreSQL 作为存储后端,提供稳定可靠的数据持久化
  • 利用 pgvector 扩展实现高效的向量操作和相似性搜索
  • 支持文档元数据存储和复杂的过滤查询
  • 与 LangChain 生态系统无缝集成,便于在各种 AI 应用中使用

环境设置

要开始使用 PGVector,首先需要安装必要的依赖并设置 PostgreSQL 环境。

  1. 安装 langchain_postgres 包:
pip install -qU langchain_postgres
  1. 启动一个带有 pgvector 扩展的 PostgreSQL 容器:
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

初始化 PGVector

使用 PGVector 需要先初始化一个向量存储实例。以下是一个基本的初始化示例:

from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings

# 初始化嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

# 连接字符串
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain"  # 使用 psycopg3

# 初始化 PGVector
vector_store = PGVector(
    embeddings=embeddings,
    collection_name="my_docs"
### 使用 PostgreSQL向量库进行相似度搜索 #### 安装 pgvector 插件 为了在 PostgreSQL 中使用向量库进行相似度搜索,首先需要安装 `pgvector` 插件。此插件允许用户在数据库中执行高效向量运算,特别适用于机器学习模型的向量数据存储检索场景[^3]。 环境需求如下: - 已安装 PostgreSQL 14 或更高版本。 - 安装了 Visual Studio 2022,用于编译插件。 以下是具体的安装步骤: ```bash git clone --branch v0.6.2 https://github.com/pgvector/pgvector.git cd pgvector make install ``` 接着,在 PostgreSQL 数据库中创建扩展: ```sql CREATE EXTENSION vector; ``` #### 创建表结构并插入向量数据 完成上述操作之后,可以创建一张包含向量字段的表格来保存待查询的数据集。例如: ```sql -- 建立一个名为 items 的新表,其中包含 id 和 embedding 字段 CREATE TABLE items ( id bigserial PRIMARY KEY, embedding vector(3) -- 这里假设我们处理的是三维空间中的点;实际应用中应调整维度大小 ); -- 向表中添加一些测试记录 INSERT INTO items (embedding) VALUES ('[1, 0, 0]'::vector),('[0, 1, 0]'::vector); ``` #### 执行相似度搜索 有了这些准备后,就可以利用内置函数来进行基于余弦距离或其他度量方式的最邻近查找了。下面给出了一种简单的方法来找到给定输入向量最近似的前 K 个项目: ```sql SELECT * FROM items ORDER BY embedding <-> '[query_vector]' LIMIT k; -- 注意:这里的 '<->' 表示计算两个向量之间的欧几里得距离; -- 如果想要采用其他类型的度量,则需替换相应的符号或调用特定的距离测量函数。 ``` 通过这种方式,能够快速定位到那些特征表达形式最为接近的目标对象,从而满足各种应用场景下的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值