标题: PGVector: 利用 PostgreSQL 实现高效的向量存储与检索
内容:
PGVector: 利用 PostgreSQL 实现高效的向量存储与检索
引言
在人工智能和机器学习领域,向量存储和相似性搜索是非常重要的技术。PGVector 是 LangChain 生态系统中的一个强大组件,它利用 PostgreSQL 数据库和 pgvector 扩展来实现高效的向量存储和检索。本文将深入探讨 PGVector 的使用方法、主要特性以及在实际应用中的优势。
PGVector 简介
PGVector 是 LangChain 向量存储抽象的一个实现,它使用 PostgreSQL 作为后端,并利用 pgvector 扩展来支持向量操作。这个组件位于一个名为 langchain_postgres
的集成包中。
主要特点:
- 使用 PostgreSQL 作为存储后端,提供稳定可靠的数据持久化
- 利用 pgvector 扩展实现高效的向量操作和相似性搜索
- 支持文档元数据存储和复杂的过滤查询
- 与 LangChain 生态系统无缝集成,便于在各种 AI 应用中使用
环境设置
要开始使用 PGVector,首先需要安装必要的依赖并设置 PostgreSQL 环境。
- 安装 langchain_postgres 包:
pip install -qU langchain_postgres
- 启动一个带有 pgvector 扩展的 PostgreSQL 容器:
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16
初始化 PGVector
使用 PGVector 需要先初始化一个向量存储实例。以下是一个基本的初始化示例:
from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings
# 初始化嵌入模型
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
# 连接字符串
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain" # 使用 psycopg3
# 初始化 PGVector
vector_store = PGVector(
embeddings=embeddings,
collection_name="my_docs"