概率与数理统计学习总结三--条件概率、全概率、贝叶斯、离散型随机变量

这篇博客总结了概率与数理统计的核心概念,包括条件概率的定义及性质、全概率公式和贝叶斯公式的应用,以及离散型随机变量的分布律和二项分布。通过实例解析了(0-1)分布和二项分布,并强调了独立事件的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老师课堂总结,请勿转载

条件概率

设试验E的样本空间为S,  A,  B是事件, 要考虑在A已经发生的条件下B发生的概率, 这就是条件概率问题.

1. 定义:    设A, B是两个事件, 且P(A)>0, 称


为在事件A发生的条件下事件B发生的条件概率

条件概率满足三个条件
非负性:对于每一事件B有
规范性:对于必然事件S,有
可列可加性:设B1,B2,…是两两互不相容的事件,则




另外,对于任意两个事件

乘法定理

由条件概率公式能迅速推知乘法定理


推广到多个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值