SLAM笔记四——Extended Kalman Filter

这是SLAM最传统的基础,是SLAM最原始的方法,虽然现在使用较少,但是还是有必要了解。

What’s Kalman Filter

这是一个贝叶斯滤波器,估计线性高斯模型,是对线性模型和高斯分布的优化方法。

高斯分布

首先,回顾一下高斯分布:
这里写图片描述
高斯分布的一些性质:
如果原变量为高斯分布,则边缘化和条件概率仍然满足高斯分布。
这里写图片描述
边缘分布和条件分布的模型:
这里写图片描述这里写图片描述


卡尔曼滤波器的主要参数

卡尔曼滤波器假设x(paths), z(observations)都为线性高斯的:
这里写图片描述
主要参数:
这里写图片描述
A是在没有命令的情况下,由于环境因素造成的机器人的位置移动。
B是命令对机器人位置的改变
C是地图和observations的对应关系,即两者的联系,描述。
最后两个为噪声,是由于测量中的误差造成的。协方差分布为R, Q。

线性motion model和observation model

因为之前已经假设了x,z都是高斯分布的
运动模型:
这里写图片描述
观测模型:
这里写图片描述
由此就可以使用第三节的贝叶斯滤波器公式:
这里写图片描述


卡尔曼滤波器算法

这里写图片描述
2,3是prediction过程,4-7是correction过程。
其实卡尔曼滤波就是在估计和测量中找到一个平衡。
K为卡尔曼增益,就是通过这个变量来调节估计和预测的平衡。
这里写图片描述
卡尔曼滤波是在假设高斯和线性动作和观测模型下进行的,但是现实中并不是这样的。


What’s Extended Kalman Filter

引入非线性模型:
这里写图片描述
在线性高斯模型中:
这里写图片描述
在非线性高斯模型中:
这里写图片描述
通过局部线性来解决非线性的问题。


复习Jacobian矩阵

这里写图片描述
它相当于对一个非线性函数做了切平面。
这里写图片描述


修改预测和校正过程

这里写图片描述
用图表示为:
这里写图片描述
这里写图片描述
由此运动模型和观测模型修改为:
这里写图片描述
这里写图片描述


Extended Kalman Filter算法

这里写图片描述

发布了70 篇原创文章 · 获赞 32 · 访问量 22万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览