小米SU7 [电气架构] 信息梳理

小米SU7是小米汽车的第一款车型,也是今年汽车市场重磅车型之一。前几天梳理了问界M9的电气架构华为问界M9 [电气架构] 信息梳理,今天来梳理一下小米SU7的电气架构信息。

首先整体来说,跟华为问界M9的差不多,从域控到区域控制器演变的交叉域控架构,智驾控制器+座舱控制器+整车控制器+区域控制器。前、左、右、后四个区域控制器,其实是将车身控制器按照就近原则。

首先是智驾域控制器,其局部的电气图如下图所示。主要与整车中央域控制器、座舱控制器相连。其中与中央域控的连接为100M BASE1以太网,与激光雷达连接的为1000M以太网。有一点值得注意的是,智驾域控上做了一路CAN线的预留,暂时还不知道作用。

智能驾驶控制器采用的是水冷散热,主控芯片型号为两颗英伟达DRIVE Orin X算力芯片,型号为TA990SA-A1。

在智能座舱控制器方面,从当前的资料来看,其局部网络如下图所示,其供电通过前区域控制器供电,通常智能域控还会与各区域控制器进行交互,比如车窗的控制、空调的控制等,但是当前的资料里没有描述这一部分,后续拿到详细资料进行补充。

主控芯片是SA8295P芯片,周围围绕了四颗PM8295AU电源芯片来驱动。控制器采用的是风扇风冷散热,制造商为德赛西威。

以下是各个局部区域的电气架构,首先是充电子网,如下图所示,各个控制器如下图上标注所示。其主控为整车中央控制器,主要链路为CAN。

下面是胎压传感器的子网络,胎压传感器与BLE节点通过蓝牙连接,其主要处理则是在整车中央域控制器。

下面则是组合开关和方向盘上的按键,其主要通过左区域控制器,左区域控制器域各个小总成通过LIN连接,区域控制器与整车控制器之间通过CAN与连接。

接下来则是空调系统,如下图所示,其主要通过右域控制器来控制。

总体来说,小米SU7的电气架构集成度相对较低,虽然有四个区域控制器,当前来看其主要还是将原来的车身控制器,按功能就近部署,各个域控制器之间主要还是通过CAN来通信,只有几条主要的连接是走以太网。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995年提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作与竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机器学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值