目标检测基础和VOC数据集

本文介绍了目标检测的基本概念,包括利用深度学习的早期方法和IoU(交并比)的重要性。接着详细阐述了VOC数据集,它是目标检测领域的经典数据集,包含20个小类别的图像,常用于评估检测算法的性能。文章提供了VOC数据集的文件结构和内容概述。
摘要由CSDN通过智能技术生成

1.目标检测基础

a. 什么是目标检测

目标检测是指在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。

在这里插入图片描述 由于深度神经网络不适合于直接预测坐标,所以将深度学习应用于目标检测的最质朴的思想就是将检测分解为分类。于是理所当然的通过滑窗选择区域,然后通过网络进行分类的方式成为最开始应用于检测的深度学习方式。
在这里插入图片描述
在选择通过滑窗检测目标后,面临了另一个问题,可能会有多个框同时圈住一个目标,那么在训练时如何确定谁才是预测最准的用于计算loss,以及如何在测试时确定预测结果是否正确呢,这就引出了IoU,IoU的全称是交并比(Intersection over Union),表示两个目标框的交集占其并集的比例。交并比越大,两个框越可能是一个目标,IOU也是后续做非极大值抑制的基础

在这里插入图片描述
图中可以看到,分子中黄色区域为红bbox和绿bbox的交集,分母中黄+红+绿区域为红bbox和绿bbox的并集,两者之比即为iou。

2.VOC数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值