第41步 深度学习图像识别:Efficientnet建模(Tensorflow)

一、写在前面

(1)Efficientnet

EfficientNet是Google在2019年提出的一种新的卷积神经网络架构,主要目标是提高模型的效率,即在保持或提高模型性能的同时,尽可能地降低模型的复杂性和计算需求。

EfficientNet的关键思想是均衡网络的深度(层数)、宽度(每层的通道数)和分辨率(输入的图像尺寸)。这是通过一种称为复合缩放(Compound Scaling)的方法实现的。在复合缩放中,深度、宽度和分辨率的缩放是同时进行的,而不是分别进行。这种方法能够有效地利用模型的参数,提高模型的性能。

EfficientNe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值