<think>嗯,用户现在想找类似S形和瑞士卷数据集的其他数据集,尤其是在sklearn里有的。首先,我得回忆一下sklearn里自带的数据集有哪些可能符合这个条件。记得之前学过,瑞士卷数据集是用`make_swiss_roll`生成的,而S形可能是`make_s_curve`。这两个都是用于流形学习的经典数据集,用于展示非线性降维的效果。
用户提到的引用里,引用4提到了LocallyLinearEmbedding处理瑞士卷,说明用户可能对降维或流形学习感兴趣。接下来,我需要列出其他类似结构的数据集。比如,`make_circles`和`make_moons`,这两个生成的是环形和月牙形数据,也常用于展示非线性分类或聚类问题。还有`make_blobs`,虽然它生成的是线性可分的高斯簇,但可以作为对比。另外,`make_gaussian_quantiles`生成分层的正态分布数据,可能也适用。
然后,用户可能需要这些数据集的代码示例,所以得给出每个数据集的生成函数和参数。比如,`n_samples`控制样本数量,`noise`控制噪声水平,这对调整数据复杂度有帮助。此外,像`make_checkerboard`生成棋盘格结构,可能也是一种复杂的二维结构,适合某些特定的算法测试。
另外,用户可能对高维数据集感兴趣,比如`load_digits`和`fetch_olivetti_faces`,这些虽然不是合成的,但在降维任务中常用。比如,手写数字数据集经过PCA处理后可能展示出流形结构,而人脸数据集则可能包含更多的非线性结构。
还要考虑用户的应用场景,他们可能在教学、算法测试或者可视化中使用这些数据集。因此,给出每个数据集的特点和适用场景会更有帮助。比如,`make_spiral`虽然不是sklearn自带的,但可以通过自定义函数生成螺旋数据,这对某些应用可能有用。
需要确保所有提到的数据集都是sklearn中的,或者至少容易通过sklearn的函数生成。同时,检查是否有遗漏的类似结构的数据集,比如`make_biclusters`或者`make_multilabel_classification`,但这些可能不太符合用户的需求。
最后,用户可能需要一些代码示例来快速使用这些数据集,所以应该提供导入语句和生成数据的代码,以及可视化示例,这样用户可以直观看到数据形状。同时,提醒用户调整参数如噪声和样本量,以满足不同的实验需求。</think>---
### 一、Scikit-learn内置的类似数据集
Scikit-learn提供了多个**非线性结构化数据集**,以下是类似S形(`make_s_curve`)和瑞士卷(`make_swiss_roll`)的常用数据集:
#### 1. **环形数据集 (`make_circles`)**
生成具有同心圆或分离圆结构的二维数据,常用于测试聚类和分类算法的非线性可分性:
```python
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=1000, noise=0.05, factor=0.5)
```
#### 2. **月牙数据集 (`make_moons`)**
创建交错分布的半圆形数据,模拟非线性分类场景:
```python
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=1000, noise=0.1)
```
#### 3. **分层高斯数据集 (`make_gaussian_quantiles`)**
生成具有层级结构的正态分布数据,适合测试混合模型:
```python
from sklearn.datasets import make_gaussian_quantiles
X, y = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3)
```
#### 4. **棋盘格数据集 (`make_checkerboard`)**
生成二维棋盘格结构,用于评估空间分割算法:
```python
from sklearn.datasets import make_checkerboard
shape = (6, 6) # 棋盘格维度
X, rows, cols = make_checkerboard(shape, noise=0.2)
```
---
### 二、经典高维流形数据集
#### 1. **手写数字数据集 (`load_digits`)**
包含8x8像素的手写数字图像,经过PCA降维后可呈现复杂流形结构:
```python
from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data, digits.target
```
#### 2. **Olivetti人脸数据集 (`fetch_olivetti_faces`)**
包含400张人脸图像(64x64像素),高维数据中隐含低维流形特征:
```python
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
X, y = faces.data, faces.target
```
---
### 三、自定义复杂结构数据集
#### 1. **螺旋数据集 (自定义实现)**
生成三维螺旋结构,模拟生物信息学中的DNA链等场景:
```python
import numpy as np
def make_spiral(n_samples=1000, noise=0.05):
theta = np.sqrt(np.random.rand(n_samples)) * 2 * np.pi
r = np.linspace(0, 10, n_samples)
x = r * np.cos(theta) + np.random.randn(n_samples) * noise
y = r * np.sin(theta) + np.random.randn(n_samples) * noise
z = np.linspace(0, 5, n_samples) + np.random.randn(n_samples) * noise
return np.vstack([x, y, z]).T
X = make_spiral()
```
#### 2. **多流形混合数据集**
组合不同流形结构生成复合数据:
```python
from sklearn.datasets import make_swiss_roll, make_s_curve
from sklearn.utils import shuffle
# 生成瑞士卷和S曲线的混合数据
X_swiss, _ = make_swiss_roll(n_samples=500)
X_s, _ = make_s_curve(n_samples=500)
X = shuffle(np.concatenate([X_swiss, X_s]))
```
---
### 四、可视化代码示例
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 生成瑞士卷数据集
from sklearn.datasets import make_swiss_roll
X, _ = make_swiss_roll(n_samples=1000, noise=0.1)
# 3D可视化
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=X[:, 0], cmap='viridis')
ax.set_title("Swiss Roll Dataset")
plt.show()
```
---
### 五、数据集特性对比表
| 数据集名称 | 维度 | 主要用途 | 非线性特征类型 | 生成函数 |
|----------------------|------|------------------------------|------------------|------------------------|
| Swiss Roll | 3D | 流形学习、降维 | 卷曲流形 | `make_swiss_roll` |
| S-Curve | 3D | 非线性降维可视化 | S形流形 | `make_s_curve` |
| Moons | 2D | 分类算法测试 | 月牙形分离 | `make_moons` |
| Circles | 2D | 聚类边界分析 | 同心圆结构 | `make_circles` |
| Gaussian Quantiles | 2D+ | 混合模型评估 | 分层高斯分布 | `make_gaussian_quantiles` |
| Olivetti Faces | 4096D| 图像流形分析 | 高维人脸流形 | `fetch_olivetti_faces` |
---
### 六、应用场景建议
1. **流形学习算法验证**
- 瑞士卷和S曲线适合测试`Isomap`、`LLE`、`t-SNE`等算法[^4]
2. **分类器非线性决策边界测试**
- 使用环形/月牙数据验证SVM核方法或神经网络
3. **生成对抗网络(GAN)测试**
- 复杂流形数据可用于评估生成模型的分布拟合能力
---
### 扩展资源
- Scikit-learn官方数据集文档:[sklearn.datasets](https://scikit-learn.org/stable/datasets.html)
- 流形学习理论背景参考《Pattern Recognition and Machine Learning》第12章[^1]
[^1]: Bishop C. M. Pattern recognition and machine learning. springer, 2006.
[^4]: 《Scikit-Learn官方示例:流形学习可视化》