【C4D】DNA螺旋

4223712-aad3ec22b4faf53e.png
制作于2017.7.31 10:12~10:45

4223712-e622828933878ac1.gif
4223712-83af3caf5eb86b75.png


收工打卡

4223712-614003a0c4fdfd19.png

小结

或许以后这里可以加个下载链接?

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

4223712-47adf476453b16e6.gif
<think>嗯,用户现在想找类似S形和瑞士卷数据集的其他数据集,尤其是在sklearn里有的。首先,我得回忆一下sklearn里自带的数据集有哪些可能符合这个条件。记得之前学过,瑞士卷数据集是用`make_swiss_roll`生成的,而S形可能是`make_s_curve`。这两个都是用于流形学习的经典数据集,用于展示非线性降维的效果。 用户提到的引用里,引用4提到了LocallyLinearEmbedding处理瑞士卷,说明用户可能对降维或流形学习感兴趣。接下来,我需要列出其他类似结构的数据集。比如,`make_circles`和`make_moons`,这两个生成的是环形和月牙形数据,也常用于展示非线性分类或聚类问题。还有`make_blobs`,虽然它生成的是线性可分的高斯簇,但可以作为对比。另外,`make_gaussian_quantiles`生成分层的正态分布数据,可能也适用。 然后,用户可能需要这些数据集的代码示例,所以得给出每个数据集的生成函数和参数。比如,`n_samples`控制样本数量,`noise`控制噪声水平,这对调整数据复杂度有帮助。此外,像`make_checkerboard`生成棋盘格结构,可能也是一种复杂的二维结构,适合某些特定的算法测试。 另外,用户可能对高维数据集感兴趣,比如`load_digits`和`fetch_olivetti_faces`,这些虽然不是合成的,但在降维任务中常用。比如,手写数字数据集经过PCA处理后可能展示出流形结构,而人脸数据集则可能包含更多的非线性结构。 还要考虑用户的应用场景,他们可能在教学、算法测试或者可视化中使用这些数据集。因此,给出每个数据集的特点和适用场景会更有帮助。比如,`make_spiral`虽然不是sklearn自带的,但可以通过自定义函数生成螺旋数据,这对某些应用可能有用。 需要确保所有提到的数据集都是sklearn中的,或者至少容易通过sklearn的函数生成。同时,检查是否有遗漏的类似结构的数据集,比如`make_biclusters`或者`make_multilabel_classification`,但这些可能不太符合用户的需求。 最后,用户可能需要一些代码示例来快速使用这些数据集,所以应该提供导入语句和生成数据的代码,以及可视化示例,这样用户可以直观看到数据形状。同时,提醒用户调整参数如噪声和样本量,以满足不同的实验需求。</think>--- ### 一、Scikit-learn内置的类似数据集 Scikit-learn提供了多个**非线性结构化数据集**,以下是类似S形(`make_s_curve`)和瑞士卷(`make_swiss_roll`)的常用数据集: #### 1. **环形数据集 (`make_circles`)** 生成具有同心圆或分离圆结构的二维数据,常用于测试聚类和分类算法的非线性可分性: ```python from sklearn.datasets import make_circles X, y = make_circles(n_samples=1000, noise=0.05, factor=0.5) ``` #### 2. **月牙数据集 (`make_moons`)** 创建交错分布的半圆形数据,模拟非线性分类场景: ```python from sklearn.datasets import make_moons X, y = make_moons(n_samples=1000, noise=0.1) ``` #### 3. **分层高斯数据集 (`make_gaussian_quantiles`)** 生成具有层级结构的正态分布数据,适合测试混合模型: ```python from sklearn.datasets import make_gaussian_quantiles X, y = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3) ``` #### 4. **棋盘格数据集 (`make_checkerboard`)** 生成二维棋盘格结构,用于评估空间分割算法: ```python from sklearn.datasets import make_checkerboard shape = (6, 6) # 棋盘格维度 X, rows, cols = make_checkerboard(shape, noise=0.2) ``` --- ### 二、经典高维流形数据集 #### 1. **手写数字数据集 (`load_digits`)** 包含8x8像素的手写数字图像,经过PCA降维后可呈现复杂流形结构: ```python from sklearn.datasets import load_digits digits = load_digits() X, y = digits.data, digits.target ``` #### 2. **Olivetti人脸数据集 (`fetch_olivetti_faces`)** 包含400张人脸图像(64x64像素),高维数据中隐含低维流形特征: ```python from sklearn.datasets import fetch_olivetti_faces faces = fetch_olivetti_faces() X, y = faces.data, faces.target ``` --- ### 三、自定义复杂结构数据集 #### 1. **螺旋数据集 (自定义实现)** 生成三维螺旋结构,模拟生物信息学中的DNA链等场景: ```python import numpy as np def make_spiral(n_samples=1000, noise=0.05): theta = np.sqrt(np.random.rand(n_samples)) * 2 * np.pi r = np.linspace(0, 10, n_samples) x = r * np.cos(theta) + np.random.randn(n_samples) * noise y = r * np.sin(theta) + np.random.randn(n_samples) * noise z = np.linspace(0, 5, n_samples) + np.random.randn(n_samples) * noise return np.vstack([x, y, z]).T X = make_spiral() ``` #### 2. **多流形混合数据集** 组合不同流形结构生成复合数据: ```python from sklearn.datasets import make_swiss_roll, make_s_curve from sklearn.utils import shuffle # 生成瑞士卷和S曲线的混合数据 X_swiss, _ = make_swiss_roll(n_samples=500) X_s, _ = make_s_curve(n_samples=500) X = shuffle(np.concatenate([X_swiss, X_s])) ``` --- ### 四、可视化代码示例 ```python import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 生成瑞士卷数据集 from sklearn.datasets import make_swiss_roll X, _ = make_swiss_roll(n_samples=1000, noise=0.1) # 3D可视化 fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=X[:, 0], cmap='viridis') ax.set_title("Swiss Roll Dataset") plt.show() ``` --- ### 五、数据集特性对比表 | 数据集名称 | 维度 | 主要用途 | 非线性特征类型 | 生成函数 | |----------------------|------|------------------------------|------------------|------------------------| | Swiss Roll | 3D | 流形学习、降维 | 卷曲流形 | `make_swiss_roll` | | S-Curve | 3D | 非线性降维可视化 | S形流形 | `make_s_curve` | | Moons | 2D | 分类算法测试 | 月牙形分离 | `make_moons` | | Circles | 2D | 聚类边界分析 | 同心圆结构 | `make_circles` | | Gaussian Quantiles | 2D+ | 混合模型评估 | 分层高斯分布 | `make_gaussian_quantiles` | | Olivetti Faces | 4096D| 图像流形分析 | 高维人脸流形 | `fetch_olivetti_faces` | --- ### 六、应用场景建议 1. **流形学习算法验证** - 瑞士卷和S曲线适合测试`Isomap`、`LLE`、`t-SNE`等算法[^4] 2. **分类器非线性决策边界测试** - 使用环形/月牙数据验证SVM核方法或神经网络 3. **生成对抗网络(GAN)测试** - 复杂流形数据可用于评估生成模型的分布拟合能力 --- ### 扩展资源 - Scikit-learn官方数据集文档:[sklearn.datasets](https://scikit-learn.org/stable/datasets.html) - 流形学习理论背景参考《Pattern Recognition and Machine Learning》第12章[^1] [^1]: Bishop C. M. Pattern recognition and machine learning. springer, 2006. [^4]: 《Scikit-Learn官方示例:流形学习可视化》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值