层次分析法(AHP)——matlab代码实现

本文介绍了层次分析法(AHP)的基本原理和步骤,包括建立层次结构模型、构建判断矩阵、进行层次单排序和一致性检验。通过Matlab代码展示了如何应用AHP解决复杂问题,强调了AHP方法在处理主观赋权问题时的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   

       层次分析法(AHP)的主要思想是根据研究对象的性质将要求达到的目标分解为多个组成因素,并按组成因素间的相互关系,将其层次化,组成一个层次结构模型,然后按层分析,最终获得最高层的重要性权值。层次分析法把一个复杂的无结构问题分解组合成若干部分或若干因素,上一层次对相邻的下一层次的全部或某些元素起支配作用,这样就形成了自上而下的层次结构,通过相关指标之间的两两比较对系统中各指标进行优劣判断,利用判断结果来综合计算各指标间的权重,从而对主要的影响因素进行排序。基本流程如下:

 

应用AHP解决问题的思路是:首先,把解决的问题分层系列化,即根据问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型;然后,对模型中每一层次因素的相对重要性,依据人们对客观显示的判断给予定量表示,再利用数学方法确定每一层次全部因素相对重要性次序的权值;最后,通过综合计算各层因素相对重要性的权值,得到最底层值,以此作为评价和选择方案的依据。AHP方法将人们的思想过程和主观判断数学化,不仅简化了系统分析和计算工作,而且有助于决策者保持其思维过程和决策过程的一致性&

### Matlab 实现层次分析法权重计算 在层次分析法中,通过构建判断矩阵来量化不同因素之间的相对重要性。为了获得各因素的权重,需要对成对比较矩阵进行特征值分解,并执行一致性检验。 #### 成对比较矩阵的创建与处理 ```matlab function [W, CI] = AHP_weight_calculate(R) % R 是 n×n 的成对比较矩阵 [n, ~] = size(R); [V, D] = eig(R); % 特征值分解 [maxD, index] = max(diag(D)); % 找到最大特征根及其对应的索引 maxV = V(:,index); W = abs(maxV) / sum(abs(maxV)); % 归一化得到权重向量 CI = (maxD - n) / (n - 1); % 计算一致性指标 end ``` 此函数接收一个正互反阵 `R` 作为输入参数[^1]。该矩阵表示各个评价对象两两之间的重要性比例关系。通过对这个矩阵实施特征值分解操作可以获取其最大的特征值以及相应的特征向量;随后利用这些数据完成权重分配工作的同时也完成了对于整个系统的简单的一致性检测过程。 #### 应用实例展示 假设存在如下所示的一个简单的三层级决策问题: - **目标层**:选择最佳供应商; - **准则层**:成本、质量和服务水平三个标准; - **方案层**:三家候选供应商A、B 和 C。 针对上述情况下的具体应用案例可参照下面给出的例子来进行说明: ```matlab % 构建准则层相对于目标层的成对比矩阵 criteria_matrix = [ 1 3 7; 1/3 1 5; 1/7 1/5 1]; [W_criteria, CI_criteria] = AHP_weight_calculate(criteria_matrix) if CI_criteria < 0.1 disp('准则层一致性比率满足要求') else warning('准则层一致性比率不达标,请重新评估'); end ``` 这段脚本定义了一个关于如何基于给定的标准去挑选最优供货商的问题框架,并且展示了怎样调用之前编写的辅助功能函数来求得相应于每一项评判依据的重要程度分布状况——即所谓的“优先序”。同时进行了基本的一致性测试以验证所作估计的有效性和合理性。
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值