无穷小的比较
例:当时,都是无穷小。(通过作差法或比值法比较无穷小量)
(1),比要快得多;
(2),sin x和x差不多;
(3)不存在,故两者不可比。
极限不同,表示这些无穷小趋于0的“快慢”程度不同。
定义:设是同一过程中的两个无穷小
- 如果,那么说β是比α高阶的无穷小,记作;
- 如果,就说β和α是同阶的无穷小;特殊的,则称α和β是等价的无穷小,记作α~β;
- 如果,就说β是比α的低阶的无穷小。
常用的等价无穷小
当时:(这里的x不仅仅代表一个狭义的变量,也可以是一个多项式)
利用等价无穷小可以求得函数近似表达式:
于是
例如:
等价无穷小的传递性
设在某极限过程中,α ~ β,β ~ γ则α ~ γ。
定理告诉我们:
在计算只含有乘、除法的极限的时候,无穷小量可以用其等价无穷小量代替计算。
例题1:求:;
错解:当时,tan x~x,sin x~x所以原式=;
正解:当时,原式
例题2:求:;
解:当 时,.所以 原式
例题3:求: ;
解:当时,
例题4:求:;
解:当时,