文章目录
1. 无穷小的比较
- 两个无穷小的和、差及乘积仍旧是无穷小,但关于两个无穷小的商,却会出现不同的情况
- 两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于零的快慢程度
- 设
α
,
β
\alpha,\beta
α,β是在同一自变量的变化过程中的无穷小,且
α
≠
0
,
lim
β
α
\alpha\ne 0,\lim \dfrac{\beta}{\alpha}
α=0,limαβ也是这个变化过程中的极限
定义
如果 lim β α = 0 \lim \dfrac{\beta}{\alpha}=0 limαβ=0,那么就说 β \beta β是比 α \alpha α高阶的无穷小,记作 β = o ( α ) \beta=o(\alpha) β=o(α);
如果 lim β α = ∞ \lim \dfrac{\beta}{\alpha}=\infin limαβ=∞,那么就说 β \beta β是比 α \alpha α低阶的无穷小;
如果 lim β α = c ≠ 0 \lim \dfrac{\beta}{\alpha}=c\ne0 limαβ=c=0,那么就说 β \beta β与 α \alpha α是同阶的无穷小;
如果 lim β α k = c ≠ 0 , k > 0 \lim \dfrac{\beta}{\alpha^k}=c\ne0,k>0 limαkβ=c=0,k>0,那么就说 β \beta β是关于 α \alpha α的k阶的无穷小;
如果 lim β α = 1 \lim \dfrac{\beta}{\alpha}=1 limαβ=1,那么就说 β \beta β与 α \alpha α等价无穷小,记作 α ∼ β \alpha \sim \beta α∼β - 常用的等价无穷小(
x
→
0
x\rightarrow0
x→0)
x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x x\sim \sin x\sim\tan x\sim \arcsin x\sim \arctan x x∼sinx∼tanx∼arcsinx∼arctanx
1 − cos x ∼ x 2 2 1-\cos x\sim \dfrac{x^2}{2} 1−cosx∼2x2
log a ( 1 + x ) ∼ x ln a \log_a(1+x)\sim \dfrac{x}{\ln a} loga(1+x)∼lnax
a x − 1 ∼ x ln a a^x-1\sim x\ln a ax−1∼xlna
ln ( 1 + x ) ∼ x \ln(1+x)\sim x ln(1+x)∼x
e x − 1 ∼ x e^x-1\sim x ex−1∼x
( 1 + x ) a − 1 ∼ a x ( a ∈ R ) (1+x)^a-1\sim ax(a\in R) (1+x)a−1∼ax(a∈R)- 自变量的变化范围一定要明确相同
2. 等价无穷小定理
- 定理1 β \beta β与 α \alpha α是等价无穷小的充分必要条件为 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α)
- 定理2 设
α
∼
α
∼
,
β
∼
β
∼
\alpha \sim \alpha^{\sim},\beta\sim\beta^{\sim}
α∼α∼,β∼β∼,且
lim
β
∼
α
∼
\lim\dfrac{\beta^{\sim}}{\alpha^{\sim}}
limα∼β∼存在,则
lim
β
α
=
lim
β
∼
α
∼
\lim \dfrac{\beta}{\alpha}=\lim \dfrac{\beta^{\sim}}{\alpha^{\sim}}
limαβ=limα∼β∼
- 求两个无穷小极限时,分子及分母因式都可用等价无穷小代替,因此如果用来代替的无穷小选得恰当的话,就可以简化运算