【高等数学】第一章 函数与极限——第七节 无穷小的比较

本文深入探讨了无穷小的概念,包括无穷小的比较,如高阶、低阶和同阶无穷小的区别。此外,详细阐述了等价无穷小的定义,并给出了一系列常见的等价无穷小替换例子。等价无穷小定理1和定理2为求解无穷小极限提供了便利,简化了计算过程。强调在应用中必须注意自变量的变化范围的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 无穷小的比较

  • 两个无穷小的和、差及乘积仍旧是无穷小,但关于两个无穷小的商,却会出现不同的情况
  • 两个无穷小之比的极限的各种不同情况,反映了不同的无穷小趋于零的快慢程度
  • α , β \alpha,\beta α,β是在同一自变量的变化过程中的无穷小,且 α ≠ 0 , lim ⁡ β α \alpha\ne 0,\lim \dfrac{\beta}{\alpha} α=0,limαβ也是这个变化过程中的极限
    定义
    如果 lim ⁡ β α = 0 \lim \dfrac{\beta}{\alpha}=0 limαβ=0,那么就说 β \beta β是比 α \alpha α高阶的无穷小,记作 β = o ( α ) \beta=o(\alpha) β=o(α)
    如果 lim ⁡ β α = ∞ \lim \dfrac{\beta}{\alpha}=\infin limαβ=,那么就说 β \beta β是比 α \alpha α低阶的无穷小
    如果 lim ⁡ β α = c ≠ 0 \lim \dfrac{\beta}{\alpha}=c\ne0 limαβ=c=0,那么就说 β \beta β α \alpha α同阶的无穷小
    如果 lim ⁡ β α k = c ≠ 0 , k > 0 \lim \dfrac{\beta}{\alpha^k}=c\ne0,k>0 limαkβ=c=0,k>0,那么就说 β \beta β是关于 α \alpha αk阶的无穷小
    如果 lim ⁡ β α = 1 \lim \dfrac{\beta}{\alpha}=1 limαβ=1,那么就说 β \beta β α \alpha α等价无穷小,记作 α ∼ β \alpha \sim \beta αβ
  • 常用的等价无穷小( x → 0 x\rightarrow0 x0)
    x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x x\sim \sin x\sim\tan x\sim \arcsin x\sim \arctan x xsinxtanxarcsinxarctanx
    1 − cos ⁡ x ∼ x 2 2 1-\cos x\sim \dfrac{x^2}{2} 1cosx2x2
    log ⁡ a ( 1 + x ) ∼ x ln ⁡ a \log_a(1+x)\sim \dfrac{x}{\ln a} loga(1+x)lnax
    a x − 1 ∼ x ln ⁡ a a^x-1\sim x\ln a ax1xlna
    ln ⁡ ( 1 + x ) ∼ x \ln(1+x)\sim x ln(1+x)x
    e x − 1 ∼ x e^x-1\sim x ex1x
    ( 1 + x ) a − 1 ∼ a x ( a ∈ R ) (1+x)^a-1\sim ax(a\in R) (1+x)a1ax(aR)
    • 自变量的变化范围一定要明确相同

2. 等价无穷小定理

  • 定理1 β \beta β α \alpha α是等价无穷小的充分必要条件为 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α)
  • 定理2 设 α ∼ α ∼ , β ∼ β ∼ \alpha \sim \alpha^{\sim},\beta\sim\beta^{\sim} αα,ββ,且 lim ⁡ β ∼ α ∼ \lim\dfrac{\beta^{\sim}}{\alpha^{\sim}} limαβ存在,则 lim ⁡ β α = lim ⁡ β ∼ α ∼ \lim \dfrac{\beta}{\alpha}=\lim \dfrac{\beta^{\sim}}{\alpha^{\sim}} limαβ=limαβ
    • 求两个无穷小极限时,分子及分母因式都可用等价无穷小代替,因此如果用来代替的无穷小选得恰当的话,就可以简化运算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值