高等数学 1.7 无穷小的比较

定义:
如果 lim ⁡ β α = 0 \lim \cfrac{\beta}{\alpha} = 0 limαβ=0 那么就说 β \beta β 是比 α \alpha α 高阶的无穷小,记作 β = o ( α ) \beta = o(\alpha) β=o(α)
如果 lim ⁡ β α = ∞ \lim \cfrac{\beta}{\alpha} = \infty limαβ= ,那么就说 β \beta β 是比 α \alpha α 低阶的无穷小
如果 lim ⁡ β α = c ≠ 0 \lim \cfrac{\beta}{\alpha} = c \neq 0 limαβ=c=0 ,那么就说 β \beta β α \alpha α同阶无穷小
如果 lim ⁡ β α k = c ≠ 0 , k > 0 \lim \cfrac{\beta}{\alpha^k} = c \neq 0, k > 0 limαkβ=c=0,k>0 ,那么就说 β \beta β 是关于 α \alpha α k k k 阶无穷小
如果 lim ⁡ β α = 1 \lim \cfrac{\beta}{\alpha} = 1 limαβ=1 ,那么就说 β \beta β α \alpha α等价无穷小 , 记作 α ∼ β \alpha \sim \beta αβ
显然,等价无穷小是同阶无穷小的特殊情况。

例1 证明:当 x → 0 x \to 0 x0 时, 1 + x n − 1 ∼ 1 n x \sqrt[n]{1 + x} - 1 \sim \cfrac{1}{n} x n1+x 1n1x
证:因为
lim ⁡ x → 0 1 + x n − 1 1 n x = lim ⁡ x → 0 ( 1 + x n ) n − 1 1 n x [ ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 ] = lim ⁡ x → 0 n ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 = 1 \begin{align*} \lim_{x \to 0} \cfrac{\sqrt[n]{1 + x} - 1}{\cfrac{1}{n} x} &= \lim_{x \to 0} \cfrac{(\sqrt[n]{1 + x})^n - 1}{\cfrac{1}{n} x \left[ \sqrt[n]{(1 + x)^{n - 1}} + \sqrt[n]{(1 + x)^{n - 2}} + \cdots + 1\right]} \\ &= \lim_{x \to 0} \cfrac{n}{\sqrt[n]{(1 + x)^{n - 1}} + \sqrt[n]{(1 + x)^{n - 2}} + \cdots + 1} = 1 \end{align*} x0limn1xn1+x 1=x0limn1x[n(1+x)n1 +n(1+x)n2 ++1](n1+x )n1=x0limn(1+x)n1 +n(1+x)n2 ++1n=1

关于等价无穷小,有以下两个定理:

定理1: β \beta β α \alpha α 是等价无穷小的充分必要条件为 β = α + o ( α ) \beta = \alpha + o(\alpha) β=α+o(α) .

例2 因为当 x → 0 x \to 0 x0 时, sin ⁡ x ∼ x , tan ⁡ x ∼ x , arcsin ⁡ x ∼ x , 1 − cos ⁡ x ∼ 1 2 x 2 \sin x \sim x, \tan x \sim x, \arcsin x \sim x, 1- \cos x \sim \cfrac{1}{2} x^2 sinxx,tanxx,arcsinxx,1cosx21x2 ,所以当 x → 0 x \to 0 x0 时有
sin ⁡ x = x + o ( x ) , tan ⁡ x = x + o ( x ) , arcsin ⁡ x = x + o ( x ) , 1 − cos ⁡ x = 1 2 x 2 + o ( x 2 ) \begin{align*} \sin x &= x + o(x), \tan x = x + o(x), \\ \arcsin x &= x + o(x), 1 - \cos x = \cfrac{1}{2} x^2 + o(x^2) \end{align*} sinxarcsinx=x+o(x),tanx=x+o(x),=x+o(x),1cosx=21x2+o(x2)

定理2:设 α ∼ α ~ , β ∼ β ~ , \alpha \sim \tilde{\alpha} , \beta \sim \tilde{\beta} , αα~,ββ~, ,且 lim ⁡ β ~ α ~ \lim \cfrac{\tilde{\beta}}{\tilde{\alpha}} limα~β~ 存在,则
lim ⁡ β α = lim ⁡ β ~ α ~ . \lim \cfrac{\beta}{\alpha} = \lim \cfrac{\tilde{\beta}}{\tilde{\alpha}} . limαβ=limα~β~.

定理2表明,求两个无穷小之比的极限时,分子或分母都可用等价无穷小替换。

注意:若分子或分母为若干因子的乘积,可对其中一个或多个因子做等价无穷小替换。

例3 求 lim ⁡ x → 0 tan ⁡ 2 x sin ⁡ 5 x \lim \limits_{x \to 0} \cfrac{\tan{2x}}{\sin{5x}} x0limsin5xtan2x .
解:当 x → 0 x \to 0 x0 时, tan ⁡ 2 x ∼ 2 x , sin ⁡ 5 x ∼ 5 x \tan{2x} \sim 2x, \sin{5x} \sim 5x tan2x2x,sin5x5x ,所以
lim ⁡ x → 0 tan ⁡ 2 x sin ⁡ 5 x = lim ⁡ x → 0 2 x 5 x = 2 5 \lim_{x \to 0} \cfrac{\tan{2x}}{\sin{5x}} = \lim_{x \to 0} \cfrac{2x}{5x} = \cfrac{2}{5} x0limsin5xtan2x=x0lim5x2x=52

例4 求 lim ⁡ x → 0 sin ⁡ x x 3 + 3 x \lim \limits_{x \to 0} \cfrac{\sin x}{x^3 + 3x} x0limx3+3xsinx .
解:当 x → 0 x \to 0 x0 时, sin ⁡ x ∼ x \sin x \sim x sinxx ,所以
lim ⁡ x → 0 sin ⁡ x x 3 + 3 x = lim ⁡ x → 0 x x ( x 2 + 3 ) = lim ⁡ x → 0 1 x 2 + 3 = 1 3 . \lim_{x \to 0} \cfrac{\sin x}{x^3 + 3x} = \lim_{x \to 0} \cfrac{ x}{x(x^2 + 3)} = \lim_{x \to 0} \cfrac{1}{x^2 + 3} = \cfrac{1}{3} . x0limx3+3xsinx=x0limx(x2+3)x=x0limx2+31=31.

例5 求 lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 cos ⁡ x − 1 \lim \limits_{x \to 0} \cfrac{(1 + x^2)^{\frac{1}{3}} - 1}{\cos x - 1} x0limcosx1(1+x2)311 .
解:当 x → 0 x \to 0 x0 时, ( 1 + x 2 ) 1 3 − 1 ∼ 1 3 x 2 (1 + x^2)^{\frac{1}{3}} - 1 \sim \cfrac{1}{3} x^2 (1+x2)31131x2 cos ⁡ x − 1 ∼ − 1 2 x 2 \cos x - 1 \sim - \cfrac{1}{2} x^2 cosx121x2 ,所以
lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 cos ⁡ x − 1 = lim ⁡ x → 0 1 3 x 2 − 1 2 x 2 = − 2 3 \lim_{x \to 0} \cfrac{(1 + x^2)^{\frac{1}{3}} - 1}{\cos x - 1} = \lim_{x \to 0} \cfrac{\cfrac{1}{3} x^2}{- \cfrac{1}{2} x^2} = -\cfrac{2}{3} x0limcosx1(1+x2)311=x0lim21x231x2=32

原文链接:高等数学 1.7 无穷小的比较

  • 9
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值