图论整理

图(Graph)是表示物件与物件之间的关系的数学对象,是图论的基本研究对象。一个不带权图中若两点不相邻,邻接矩阵相应位置为0,对带权图(网),相应位置为∞。

对于一个拥有n个顶点的无向连通图,它的边数一定多于n-1条。若从中选择n-1条边,使得无向图仍然连通,则由n个顶点及这 n-1条边(弧)组成的图被称为原无向图的生成树

 

重要的图

编辑

平面图

连通图

强连通图

有向无环图

AOV网

AOE网

完全图:每一对不同顶点间都有边相连的的图,记作Kn。

二分图:顶集,且每一条边都有一个顶点在X中,而另一个顶点在Y中。

完全二分图:二分图G中若任意两个X和Y中的顶点都有边相连。若,则图G记作Km,n。

正则图:如果图中所有顶点的度皆相等,则此图称为正则图

二叉图

基本概念

编辑

h图是一个有序对<V,E>,V是结点集,E是边集,当&frac12;V&frac12;,&frac12;E&frac12;有限时,<V,E>称为有限图;否则称无限图.

h无向边, 与无序结点(v,u)相关联的边;有向边,与有序结点<v,u>相关联的边.

h无向图,每条边都是无向边的图,记作G=<V,E>; 每条边都是有向边的图,记作D=<V,E>.

h混合图,既有有向边,也有无向边的图.

h平凡图,仅有一个结点的图;零图,边集为空集的图<V, &AElig;>,即仅有结点的图.

h自回路(环),关联于同一个结点的边.

h无向平行边,联结相同两个结点的多于1条的无向边;有向平行边,联结两个结点之间的多于1条且方向相同的有向边.

h简单图,不含平行边和自回路的图.

h在无向图G=<V,E>中,与结点v(&Icirc;V)关联的边数,即为结点度数deg(v)或d(v).;在有向图中,结点v的出度和入度之和为度数.

h在有向图D=<V,E>中,以v(&Icirc;V)为起点的边之条数为出度deg+(v);以v(&Icirc;V)为终点的边之条数为入度deg-(v)..

h最大度数,D(G)=max{d(v)&frac12;v&Icirc;V};最小度数,d(G)=min{d(v)&frac12;v&Icirc;V}

h有n个结点的且每对结点都有边相连无向简单图,无向完全图Kn. 此时有 ;有n个结点的且每对结点之间都有两条方向相反的边相关连的有向简单图为有向完全图,.此时有

h设G=<V,E>, V,E的子集V&cent;,E&cent;构成的图G&cent;=<V&cent;,E&cent;>是图G的子图;若G&cent;&Iacute;G且G&cent;&sup1;G,(V&cent;&Igrave;V或E&cent;&Igrave;E),G&cent;是G的真子图.

h生成子图,设图G=<V,E>, 若E&cent;&Iacute;E, 则图<.V,E&cent;>是<V,E>的生成子图. 即结点与原图G相同的子图,为生成子图.

h补图`G=<V,E&cent;>,设G=<V,E>, 以V为结点集,以使G成为完全图所添加的边为边集E&cent;的图,就是图G的补图G&cent;,.,即<V,E&Egrave;E&cent;>是完全图, 其中E&Ccedil;E&cent;=&AElig;.

h图的同构,设G1=<V1,E1>和G2=<V2,E2>, 存在双射f:V1&reg;V2,"(vi,vj)&Icirc;E1, 当且仅当 (f(vi),f(vj))&Icirc;E2,且(vi,vj)与 (f(vi),f(vj))的重数相同. 则G1≌G2.

同构充分条件:建立两个图的对应关系,这个关系是双射函数.

同构必要条件:①结点数相同;②边数相同;③度数相同的结点个数相同.

基本术语

编辑

阶(Order):图G中顶集V的大小称作图G的阶。

子图(Sub-Graph):当图G'=(V',E')其中V‘包含于V,E’包含于E,则G'称作图G=(V,E)的子图。每个图都是本身的子图。

生成子图(Spanning Sub-Graph):指满足条件V(G') = V(G)的G的子图G'。

导出子图(Induced Subgraph):以图G的顶点集V的非空子集V1为顶点集,以两端点均在V1中的全体边为边集的G的子图,称为V1导出的导出子图;以图G的边集E的非空子集E1为边集,以E1中边关联的顶点的全体为顶点集的G的子图,称为E1导出的导出子图。

度(Degree):一个顶点的度是指与该顶点相关联的边的条数,顶点v的度记作d(v)。

入度(In-degree)和出度(Out-degree):对于有向图来说,一个顶点的度可细分为入度和出度。一个顶点的入度是指与其关联的各边之中,以其为终点的边数;出度则是相对的概念,指以该顶点为起点的边数。

自环(Loop):若一条边的两个顶点为同一顶点,则此边称作自环。

路径(Path):从u到v的一条路径是指一个序列v0,e1,v1,e2,v2,...ek,vk,其中ei的顶点为vi及vi - 1,k称作路径的长度。如果它的起止顶点相同,该路径是“闭”的,反之,则称为“开”的。一条路径称为一简单路径(simple path),如果路径中除起始与终止顶点可以重合外,所有顶点两两不等。

行迹(Trace):如果路径P(u,v)中的边各不相同,则该路径称为u到v的一条行迹。

轨道(Track):如果路径P(u,v)中的顶点各不相同,则该路径称为u到v的一条轨道。

闭的行迹称作回路(Circuit),闭的轨称作圈(Cycle)。

(另一种定义是:walk对应上述的path,path对应上述的track。Trail对应trace。)

桥(Bridge):若去掉一条边,便会使得整个图不连通,该边称为

 

 

 

图的基本概念
在无向图G=<V,E>中,与结点v(V)关联的边数,即为结点度数deg(v)或d(v).;
有向图G=<V,E>中,,以结点v为始点的变的条数为该点的出度,记作deg+(v);以结点v为终点的边为该点的入度,记作deg-(v);结点v的出度和入度之和为度数. 
最大度数,(G)=max{d(v)vV};

    最小度数,(G)=min{d(v)vV}

 

 

通路、回路、图的连通性

点割集与割点,设无向图G=<V,E>,存在结点集VV,使得P(G-V)>P(G),而对任意VV,都有P(G-V)=P(G),V称为图G的点割集. 若V是单元集,V={v},v叫做割点. 

边割集与割边,设无向图G=<V,E>,存在边集EE,使得P(G-V)>P(G),而对任意EE,都有P(G-E)=P(G),E称为图G的边割集. 若E是单元集,E={e},e叫做割边(桥).  

 

 

通路、回路、图的连通性
点连通度:最小的点割集的点数目
边连通度:最小的边割集的边数目

定理5:

 

通路、回路、图的连通性
单侧通路,有向图中,任意一对结点之间至少有一个结点可达另一结点. 
强连通,在有向图中任何一对结点都相互可达. 
弱连通,略去有向图D各边的方向成为无向连通图,称D是弱连通图. 

由定义可知:强连通    (一定是)      单侧连通     (一定是)      弱连通.  

 

通路、回路、图的连通性
定理:一个有向图是强连通的充分必要条件是G中有一个回路,它至少经过每个结点一次的。
强分图:既有强连通性的最大子图
单侧分图:既有单侧连通性的最大子图
弱分图:既有弱连通性的最大子图

定理:在有向图D=<V,E>中,它的每个结点位于且仅位于一个强分图中

 

 

最短路径和关键路径
带权图:G<V,E,W>,其中W为每边权的集合,即对无向图vij的每边都有一个实数wij与之对应
路径:指的是一条初级通路
            初级通路的权
最短路径:在带权图中,从vi到vj的各通路中权和最小的通路

关键路径:在有向带权图中两结点之间的最长通路问题

 

 

最小点基和最小权点基

  百度一下,发现这方面的资料太少。最小权点基貌似没有。

  这两类问题都需要强连通分量来解决。强连通的模版(三个)在我博客的模版分类中有。

点基:在有向图G=(G,V)中,B是V的子集。如果对于任意的y属于V,不属于B,都存在一个x属于B,使得x是y的前代(有一条边从x到y),则称B是一个点基。

PS:做题的时候间接相连也算。也就是有一条路径从x到y。

最小点基:顶点最少的点基。

最小权点基:顶点对应的权值之和最小的点基。(顶点权值非负)

最高强连通分量:顶点数目不能增加的强连通分量。(自己理解的)

求最小点基的步骤:

①找出图G的所有强连通分量。

②从强连通分量中找出所有的最高强连通分量。也就是缩点后入度为0的点。

③从每个最高强连通分量中任取一点,组成点集B就是一个最小点基。

 

求最小权点基的步骤:

①找出图G的所有强连通分量。

②从强连通分量中找出所有的最高强连通分量。也就是缩点后入度为0的点。

③从每个最高强连通分量中取权值最小的点,组成点集B就是一个最小点权基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hhjian6666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值