SD是stable diffusion的简称,AI绘画的一个开源应用,(不需要科学上网),目前使用的版本是B站UP秋葉aaaki整理的最终版。
安装教程详见 B站up主 秋葉aaaki,教程下有提供stable diffusion的下载链接。
安装必要的三个基础部分,大约10G,百度网盘获取
UP主的链接没了,这里放个之前保存到:
链接:https://pan.baidu.com/s/1d0TpQ8TZ7PUPtyOguTTuKg?pwd=kx7w 提取码:kx7w
安装还是需要看up主的教程。
1.整合包,这是本体,https://www.bilibili.com/video/BV17d4y1C73R
2.WebUI,这是汉化的UI界面,https://www.bilibili.com/video/BV1ne4y1V7QU
3.插件Controlnet,这是灵魂插件,可固定动作,https://www.bilibili.com/video/BV1Wo4y1i77v
进阶魔法(可选可不选)
比如,安装Deepbooru,训练模型,得到固定的画风,素材整理比较麻烦,长宽1:1的画面干净的人物图片,素材10--100张左右。
下面正式开始介绍界面:
文生图、controlnet
文生图的界面功能:
鼠标悬停在UI上即可获得解释
提示词语言:英语,
推荐谷歌翻译,汉译英,复制粘贴到正面指示词,就可以生成了。
生成批次和每批数量越大,出图越慢,对显卡要求越高;
一般填1,你也可以多试试。
如果出图太慢可以选择中止,重新调参数。
输出结果,在根目录可以找到,比如:
常见问题1:Tag提示词怎么写?
先看AI如何理解你的提示词,
stable-diffusion-webui Wiki ·https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/
这里是官方维基,需要梯子进去,全英文+很多代码,看不懂。
下面是个人观察AI的理解经验:
第一,Tag排序很重要,越前面的词汇越受AI重视,重要事物位置放前面;
第二,()[] {} 会更改词汇的权重,()是webui的版本,写法(A:1.3)=1.3倍权重的A,词汇效果不明显可以慢慢提高它的权重,立刻拉满权重又可能出现盖过其他词汇的问题;
错误的举例:正面指示词:one cat,Graphic style,Illustration,(a girl doing yoga:1.3),There are many indoor potted plants on the ground.
调换one cat 和 a girl doing yoga 的效果,a girl doing yoga,Graphic style,Illustration,(one cat:1.3),There are many indoor potted plants on the ground.
第三,AI对数量的理解存在问题,尽量不用:数字+色彩+事物 的描述,
比如one orange cat ,AI会理解为one orange,many cats,总之很奇怪;
第四,词性对画面的影响,这里主要考虑动词,也就是事物和事物之间的位置和状态,
对画面不满意,还可以从动词这方面修改。
第五,负面指示词很重要,减少多肢和低品质画面,必填;
推荐使用已有的Tag,进行组合,相当高效。
SD自带的解析AI图片的Tag方法:
网站解析方法:
(一般懒得开启动器时用)
拖动AI图片进入下面网站,自动解析AI作品参数。
Stable Diffusion 法术解析spell.novelai.dev/
效果如下:
常见问题2:服饰难以用语言描述
解决方法:
一个是复制粘贴类似AI图片的Tag,手动找关键词(顺便学一下英语)。
另一个是问chartgpt,如果某个角色穿了这件衣服,且角色在2021年前出现过,让AI用英语进行描述,你再复制粘贴。
试过,感觉还行。
而且,如果是著名的游戏人物,直接告诉AI人物的名字,也容易生成类似服饰效果。
常见问题3:卡住、不能用等情况
显存不够,重启,或者,换显卡。
其他问题,我也不太懂,试试一键更新吧,
实在不行去B站看up主 秋葉aaaki 专栏,搜关键词。
插件controlnet界面功能如下:
只要线的效果,可以不写Tag,
但是预处理效果可能阴间,所以如果有上色需求就写好Tag。
Preprocessor(预处理器)和模型,一般两者配合使用,左右单词对应着选。
预处理器也可以选none,模型选别的,只是结果生成的两张图中,有一张原图。
素材的尺寸比例尽量为1:1,不然出图可能少一部份。
初次使用,出图速度可能比较慢。
固定动作:openpose+openpose
openpose,配和词汇增减权重,主要起画面构图作用。
提取边缘线:canny+canny
可以不写Tag,得到类似线稿的效果,
但是上色效果可能阴间,如果有上色需求就写Tag。
sampling steps = 20,十几秒出图。
粗线稿:hed + control_hed
效果类似粗线稿。
建筑线段检测:mlsd +control_mlsd
用的楼阁,生成的都是直线,没有曲线。
深度图:depth + control_depth
如果以上内容对您有帮助的话,顺手点个赞作者会高兴一整天的!