VGGNet 《VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION》学习笔记

1.INTRODUCTION

作者开篇就说明了VGG的特点——深度, 为啥可以这么深呢?因为卷积核的size小!


2.卷积结构

输入是224*224的RGB图像,预处理是对于每个RGB值减掉了训练集的均值。

卷积核的大小:3*3,能够表达上/下, 左/右,中心这些概念的最小尺寸。作者也在其中一种网络中使用了1*1尺寸的卷积核,可以看做是一种线性的变换。

stride=1, padding根据保持输出与输入尺寸一致为原则, 比如3*3 的卷积核,就选择padding=1。

max-pooling是2*2大小,stride = 2.


全连接有三层,最后一个输出是1000维,用的softmax,所有的网络(vgg有好多个网络)的全连接层都是一样的。


非线性函数都是用的ReLU,只有一个网络使用了LRN,作者说没啥卵用还消耗内存和计算量,哈哈,上一篇博客我们刚说过AlexNet吹比说这个LRN结构效果很好,这是要实力pk AlexNet。


整个结构的表格描述如下


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值