1.INTRODUCTION
作者开篇就说明了VGG的特点——深度, 为啥可以这么深呢?因为卷积核的size小!
2.卷积结构
输入是224*224的RGB图像,预处理是对于每个RGB值减掉了训练集的均值。
卷积核的大小:3*3,能够表达上/下, 左/右,中心这些概念的最小尺寸。作者也在其中一种网络中使用了1*1尺寸的卷积核,可以看做是一种线性的变换。
stride=1, padding根据保持输出与输入尺寸一致为原则, 比如3*3 的卷积核,就选择padding=1。
max-pooling是2*2大小,stride = 2.
全连接有三层,最后一个输出是1000维,用的softmax,所有的网络(vgg有好多个网络)的全连接层都是一样的。
非线性函数都是用的ReLU,只有一个网络使用了LRN,作者说没啥卵用还消耗内存和计算量,哈哈,上一篇博客我们刚说过AlexNet吹比说这个LRN结构效果很好,这是要实力pk AlexNet。
整个结构的表格描述如下