1. 数据结构
Pandas中一共有三种数据结构,分别为:Series、DataFrame 和MultiIndex。
其中Series是一维数据结构,DataFrame是二维表格型数据结构,MultiIndex是三维数据结构。
1.1 Series
Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点
数等,主要由一组数据和与之相关的索引两部分构成。
Series的创建:
# 导入pandas
import pandas as pd
pd.Series(data=None, index=None, dtype=None)
参数: data:传入的数据,可以是ndarray、list等
index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建
一个从0-N的整数索引。
dtype:数据的类型
通过已有数据创建:
指定内容,默认索引:
pd.Series(np.arange(10))
# 运行结果
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
dtype: int64
指定索引:
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
# 运行结果
1 6.7
2 5.6
3 3.0
4 10.0
5 2.0
dtype: float64
通过字典数据创建:
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
color_count
# 运行结果
blue 200
green 500
red 100
yellow 1000
dtype: int64
Series的属性
为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values。
color_count.index
# 结果
Index(['blue', 'green', 'red', 'yellow'], dtype='object')
color_count.values
# 结果
array([ 200, 500, 100, 1000])
# 也可以使用索引来获取数据:
color_count[2]
# 结果
100
1.2 DataFrame
DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引。
行索引,表明不同行,横向索引,叫index,0轴,axis=0;
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1。
DataFrame的创建:
# 导入pandas
import pandas as pd
pd.DataFrame(data=None, index=None, columns=None)
参数:index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
通过已有数据创建:
pd.DataFrame(np.random.randn(2,3))
# 构造行索引序列
subjects = ["语文", "数学", "英语", "政治", "体育"]
# 构造列索引序列
stu = ['同学' + str(i) for i in range(score_df.shape[0])]
# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)
DataFrame的属性:
shape、index、values、columns、T
data.shape
# 结果
(10, 5)
data.index
# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
data.columns
# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
data.values
array([[92, 55, 78, 50, 50],
[71, 76, 50, 48, 96],
[45, 84, 78, 51, 68],
[81, 91, 56, 54, 76],
[86, 66, 77, 67, 95],
[46, 86, 56, 61, 99],
[46, 95, 44, 46, 56],
[80, 50, 45, 65, 57],
[41, 93, 90, 41, 97],
[65, 83, 57, 57, 40]])
data.T
head(5):显示前5行内容
如果不补充参数,默认5行。填入参数N则显示前N行。
tail(5):显示后5行内容
如果不补充参数,默认5行。填入参数N则显示后N行。
DatatFrame索引的设置:
修改行列索引值:
stu = ["学生_" + str(i) for i in range(score_df.shape[0])]
# 必须整体全部修改
data.index = stu
重设索引:
reset_index(drop=False) 设置新的下标索引
drop:默认为False,不删除原来索引,如果为True,删除原来的索引值。
以某列值设置为新的索引:
set_index(keys, drop=True) keys : 列索引名成或者列索引名称的列表
drop : boolean, default True。当做新的索引,删除原来的列。
df = pd.DataFrame({'month': [1, 4, 7, 10],
'year': [2012, 2014, 2013, 2014],
'sale':[55, 40, 84, 31]})
month sale year
0 1 55 2012
1 4 40 2014
2 7 84 2013
3 10 31 2014
# 以月份设置新的索引
df.set_index('month')
sale year
month
1 55 2012
4 40 2014
7 84 2013
10 31 2014
# 设置多个索引,以年和月份
df = df.set_index(['year', 'month'])
df
sale
year month
2012 1 55
2014 4 40
2013 7 84
2014 10 31
注意:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。
1.3 MultiIndex
MultiIndex是三维的数据结构, 多级索引(也称层次化索引)是pandas的重要功能,可以在
Series、DataFrame对象上拥有2个以及2个以上的索引。
multiIndex的创建:
arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
# 结果
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
index属性;names:levels的名称;levels:每个level的元组值。