启发式优化算法
文章平均质量分 77
n不正
大家好。
展开
-
爬山算法
爬山算法1 爬山算法简单介绍 爬山算法是一种寻找局部最优的方法,属于启发式算法的一种。由于爬山算法专注于寻找局部最优,因此该算法虽然搜索效率较高,但是也损失了很高的精度,只能达到局部最优解。 爬山算法利用简单的贪心搜索,每次在当前解的临近解中选择一个更优解作为当前解,指导达到局部最优。如图所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动原创 2017-04-10 16:30:12 · 4654 阅读 · 1 评论 -
粒子群算法(Particle Swarm Optimization)
粒子群算法(Particle Swarm Optimization) 粒子群算法是一种启发式优化算法,1995年由Eberhart和kennedy提出。该算法起源于鸟群捕食的启发,进而利用群体智能在解空间中不断搜索取得最优解。1 基本PSO算法介绍 在粒子群算法中,每个解空间中的点被抽想成为一个d维的粒子,且每一个粒子对应着由目标函数决定的适应度(fitness)。同时每一个粒子对应着解空间中的原创 2017-04-10 15:05:05 · 8255 阅读 · 1 评论 -
模拟退火算法(Simulated Annealing)
模拟退火算法(Simulated Annealing)1 模拟退火算法介绍 模拟退火算法属于启发式优化算法中的一种,该算法通过不断地在当前解的周围寻找更优解来进行迭代从而找到问题的最优解。 模拟退火算法如其名,类似于热力学中的退火过程。在某个给定的初始温度下,随着温度的不断下降,算法将在多项式时间内寻找到问题的近似最优解。2 步骤初始化温度T,初始解状态S,每个温度t下的迭代次数L当k原创 2017-04-10 20:28:08 · 5394 阅读 · 0 评论 -
遗传算法
遗传算法遗传算法GA的特点GA流程图GA算法基本过程GA算法具体步骤分析选择交叉变异GA与传统优化算法的区别算法的经典应用算法实际应用中的问题GA的C和python实现 遗传算法(Genetic Algorithm)是由美国的J.Holland教授于1975年首先提出。它是模拟达尔文进化理论和自然界优胜劣汰的机制进行全局最优解搜索的启发式优化算法。遗传算法从问题的一个原创 2017-04-01 22:25:45 · 7544 阅读 · 2 评论